D7
Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (O). Đường thẳng CO cắt đường tròn (O) tại điểm thứ hai là D; đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là E. BE cắt AO tại F,H là giao điểm của AO và BC 
 a,CM ODEH nội tiếp đường tròn
  b,CM HE vuông góc với BF  
NT
7 tháng 4 2023 lúc 21:44

a: Xét ΔABE và ΔADB co

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB/AD=AE/AB

=>AB^2=AD*AE

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2=AE*AD

=>AH/AD=AE/AO

=>ΔAHE đồng dạng với ΔADO

=>góc AHE=góc ADO

=>góc OHE+góc ODE=180 độ

=>OHED nội tiếp

b: OHED nội tiếp

=>góc HED+góc HOD=180 độ

BD//AO

=>góc BDO+góc HOD=180 độ

=>góc BDO=góc HED

góc BCD+góc BDC=90 độ

góc BCD=góc BED
=>góc HED+góc BED=90 độ

=>HE vuông góc BF tại E

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
TL
Xem chi tiết
NJ
Xem chi tiết
PM
Xem chi tiết
TP
Xem chi tiết
TN
Xem chi tiết
BN
Xem chi tiết