Tìm nghiệm phức \(\frac{\left|z\right|^4}{z^2}\)+\(\overline{z}\)=\(\frac{-200}{1-7i}\)
Tìm số phức z thỏa mãn \(\frac{\left(\left|z\right|-1\right)\left(1+iz\right)}{z-\frac{1}{\overline{z}}}=i\)
Điều kiện \(z\ne0;\left|z\right|\ne1\)
\(\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left|z\right|^2-1}=i\Leftrightarrow\frac{\overline{z}\left(\left|z\right|-1\right)\left(1+iz\right)}{\left(\left|z\right|-1\right)\left(\left|z\right|+1\right)}\)
\(\Leftrightarrow\overline{z}\left(1+iz\right)=\left(\left|z\right|+1\right)i\)
\(\Leftrightarrow\overline{z}+i\left|z\right|^2=\left(\left|z\right|+1\right)i\) (*)
Giả sử \(z=x+yi,x,y\in R\), khi đó (*) trở thành :
\(x-yi+\left(x^2+y^2\right)i=\left(\sqrt{x^2+y^2}+1\right)i\)
\(\Leftrightarrow x+\left(x^2+y^2-\sqrt{x^2+y^2}-y-1\right)i=0\)
\(\Leftrightarrow\begin{cases}x=0\\x^2+y^2-\sqrt{x^2+y^2}-y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=0\\y^2-\left|y\right|-y-1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=0\\\begin{cases}y=-1\\y=1+\sqrt{2}\end{cases}\end{cases}\)
Nếu \(x=0,y=1+\sqrt{2}\) thì \(z=\left(1+\sqrt{2}\right)i\) thỏa mãn điều kiện
Nếu \(x=0,y=-1\) thì \(z=-i\) , khi đó \(\left|z\right|=1\) không thỏa mãn điều kiện
Vậy số phức cần tìm là \(z=\left(1+\sqrt{2}\right)i\)
Tìm các số phức sao cho :
\(\left|z\right|=1,\left|\frac{z}{\overline{z}}+\frac{\overline{z}}{z}\right|=1\)
Đặt \(z=\cos x+i\sin x,x\in\left[0,2\pi\right]\)
\(1=\left|\frac{z}{\overline{z}}+\frac{\overline{z}}{z}\right|=\frac{\left|z^2+\overline{z}^2\right|}{\left|z\right|^2}\)
\(=\left|\cos2x+i\sin2x+\cos2x-i\sin2x\right|\)
\(=2\left|\cos2x\right|\)
Do đó : \(\cos2x=\frac{1}{2}\) hoặc \(\cos2x=-\frac{1}{2}\)
- Nếu \(\cos2x=\frac{1}{2}\)
thì : \(x_1=\frac{\pi}{6},x_2=\frac{5\pi}{6},x_3=\frac{7\pi}{6},x_4=\frac{11\pi}{6}\)
- Nếu \(\cos2x=-\frac{1}{2}\)
thì : \(x_5=\frac{\pi}{3},x_6=\frac{2\pi}{3},x_7=\frac{4\pi}{3},x_8=\frac{5\pi}{3}\)
Do đó có 8 nghiệm :\(z_k=\cos x_k+i\sin x_kk=1,2,3,.....,8\)
1. Cho số phức z thỏa mãn hệ thức | z-1+i | = | z-2-3i |. Tìm giá trị nhỏ nhất của biểu thức P = | z+2+i | + | z-3+2i |
2. Cho số phức z thỏa mãn hệ thức | z-i | = 2. Biết rằng | z | lớn nhất. Tìm phần ảo của z
3. Cho số phức z thỏa \(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)\). Tìm phần ảo của số phức z
4. Cho 2 số phức z = m + 3i, z' = 2 - (m + 1)i. Tìm giá trị thực của m để z.z' là số thực
5. Cho 3 điểm A, B, M lần lượt biểu diễn các số phức -4, 4i, x + 3i. Với giá trị thực nào của x thì A, B, M thẳng hàng?
6. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Xác định phần ảo của số phức \(3z_1-2z_2\)
7. Nếu mô đun số phức z bằng m thì mô đun của số phức \(\left(1-i\right)^2z\) bằng?
8. Trong tất cả các số phức z thỏa mãn hệ thức | z-1+3i | = 3. Tìm min | z-1-i |
9. Trong mặt phẳng phức tìm điểm biểu diễn số phức z = \(\frac{i^{2017}}{3+4i}\)
10. Trong mặt phẳng phức với hệ trục tọa độ Oxy, điểm biểu diễn của các số phức z = 3 + bi với b \(\in\) R luôn nằm trên đường có phương trình là: A. y = x B. x = 3 C. y = x + 3 D. y = 3
11. Cho 2 số phức \(z_1=1+2i\), \(z_2=2-3i\). Tổng hai số phức là?
12. Cho số phức z = 2 + 5i. Tìm số phức \(w=iz+\overline{z}\)
13. Ký hiệu \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2+z+1=0\). Tìm trên mặt phẳng tọa độ điểm nào dưới đây là điểm biểu diễn số phức \(w=\frac{i}{z_0}\): A. \(M\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) B. \(M\left(-\frac{\sqrt{3}}{2};\frac{1}{2}\right)\) C. \(M\left(\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\) D. \(M\left(-\frac{1}{2};-\frac{\sqrt{3}}{2}\right)\)
14. Cho số phức z thỏa mãn hệ thức | z+7-5i | = | z-1-11i |. Biết rằng số phức z = x + yi thỏa mãn \(\left|z-2-8i\right|^2+\left|z-6-6i\right|^2\) đạt giá trị nhỏ nhất. Giá trị của biểu thức \(p=x^2-y^2\)?
15. Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(2z^2-6z+5=0\). Điểm nào sau đây biểu diễn số phức \(iz_0\): A. \(M\left(\frac{3}{2};\frac{1}{2}\right)\) B. \(M\left(\frac{3}{2};-\frac{1}{2}\right)\) C. \(M\left(-\frac{1}{2};\frac{3}{2}\right)\) D. \(M\left(\frac{1}{2};\frac{3}{2}\right)\)
16. Tính mô đun của số phức \(w=z^2+i\overline{z}\) biết z thỏa mãn \(\left(1+2i\right)z+\left(2+3i\right)\overline{z}=6+2i\)
17. Trong mặt phẳng phức, cho 3 điểm A, B, C lần lượt biểu diễn 3 số phức \(z_1=1+i\), \(z_2=\left(1+i\right)^2\), \(z_3=a-i\left(a\in R\right)\). Để tam giác ABC vuông tại B thì A bằng? A. -3 B. 3 C. -4 D. -2
18. Cho số phức z thỏa mãn (1+2i)z = 3+i. Tính giá trị biểu thức \(\left|z\right|^4-\left|z\right|^2+1\)
19. Cho số phức z = a + (a-1)i (a\(\in R\)). Giá trị thực nào của a để | z | = 1 ?
20. Cho số phức z thoả mãn hệ thức | z+5-i | = | z+1-7i |. Tìm giá trị lớn nhất của biểu thức P = | |z-4-i| - |z-2-4i| |
21. Trong các số phức z = a + bi thỏa mãn | z-1+2i | =1, biết rằng | z+3-i | đạt giá trị nhỏ nhất. Tính \(p=\frac{a}{b}\)
22. Gọi A, B, C lần lượt là các điểm biểu diễn các số phức \(z_1=-1+3i\), \(z_2=-3-2i\), \(z_3=4+i\). Chọn kết luận đúng nhất: A. Tam giác ABC cân B. Tam giác ABC đều C. Tam giác ABC vuông D. Tam giác ABC vuông cân
23. Cho số phức z = 5-3i. Tính \(1+\overline{z}+\left(\overline{z}\right)^2\)
24. Cho \(f\left(z\right)=z^3-3z^2+z-1\) với z là số phức. Tính \(f\left(z_0\right)-f\left(\overline{z_0}\right)\) biết \(z_0=1-2i\)
25. Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của z trên mặt phẳng tọa độ Oxy đến điểm M (3;-4) là: A. \(\sqrt{13}\) B. \(2\sqrt{2}\) C. \(2\sqrt{5}\) D. \(2\sqrt{10}\)
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
Câu 9:
\(z=\frac{i^{2017}}{3+4i}=\frac{\left(i^2\right)^{1008}.i}{3+4i}=\frac{i}{3+4i}=\frac{i\left(3-4i\right)}{\left(3-4i\right)\left(3+4i\right)}=\frac{4}{25}+\frac{3}{25}i\)
Điểm biểu diễn z là \(A\left(\frac{4}{25};\frac{3}{25}\right)\)
Câu 10:
\(a=3\Rightarrow z\) nằm trên đường thẳng \(x=3\)
Câu 11:
\(z_1+z_2=1+2i+2-3i=3-i\)
Câu 12:
\(z=2+5i\Rightarrow\overline{z}=2-5i\)
\(\Rightarrow w=i\left(2+5i\right)+2-5i=-3-3i\)
Câu 13:
\(z^2+z+1=0\Rightarrow\left\{{}\begin{matrix}z_1=-\frac{1}{2}+\frac{\sqrt{3}}{2}i\\z_2=-\frac{1}{2}-\frac{\sqrt{3}}{2}i\end{matrix}\right.\) (ném vô casio cho giải pt)
\(\Rightarrow z_0=-\frac{1}{2}-\frac{\sqrt{3}}{2}i\Rightarrow w=\frac{i}{z_0}=-\frac{\sqrt{3}}{2}-\frac{1}{2}i\) (ném vô mode 2 bấm cho lẹ) \(\Rightarrow M\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)
Câu 14:
Đặt \(z=x+yi\) \(\Rightarrow\left|x+7+\left(y-5\right)i\right|=\left|x-1+\left(y-11\right)i\right|\)
\(\Rightarrow\left(x+7\right)^2+\left(y-5\right)^2=\left(x-1\right)^2+\left(y-11\right)^2\)
\(\Rightarrow4x+3y-12=0\) quỹ đạo là đường thẳng d
Gọi \(A\left(2;8\right);B\left(6;6\right)\) và I là trung điểm AB \(\Rightarrow I\left(4;7\right)\)
\(M\left(x;y\right)\) là điểm biểu diễn \(z\Rightarrow P=MA^2+MB^2\)
Tam giác AMB có MI là trung tuyến ứng với cạnh AB
Theo công thức trung tuyến: \(MA^2+MB^2=2MI^2+\frac{AB^2}{2}\)
\(\Rightarrow P_{min}\) khi và chỉ khi \(MI_{min}\)
Gọi \(C\) là hình chiếu của I lên d \(\Rightarrow\Delta ICM\) vuông tại C, do IM là cạnh huyền và IC là cạnh góc vuông nên \(IM\ge IC\Rightarrow IM_{min}=IC\)
Vậy ta quy về bài toán tìm hình chiếu của I lên d
Đường thẳng qua I vuông góc với d có pt:
\(3\left(x-4\right)-4\left(y-7\right)=0\Leftrightarrow3x-4y+16=0\)
Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}4x+3y-12=0\\3x-4y+16=0\end{matrix}\right.\) \(\Rightarrow C\left(0;4\right)\)
\(\Rightarrow p=x^2-y^2=0^2-4^2=-16\) (p này khác P kia nha :D)
bài 1 a/tìm số phức z biết \(\left|z\right|+z=3+4i\)
b/ cho các số phức z1 z2 thỏa mãn z1+3z1z2=(-1+i)z2 và 2z1-z2=3+2i.tìm modun của số phức w=\(\frac{z1}{z2}\)+z1+z2
bài 2 a/giải pt trên tập số phức 2\(z^4\)-7\(z^3\)+9\(z^2\)+2=0
b/cho số phức z=1+i\(\sqrt{3}\).Hãy tìm dạng lượng giác của các số phức z , \(\overline{z}\) , -z,\(\frac{1}{z}\)
Bài tập số 4: Tìm số phức liên hợp \(\overline{Z}\) và tính modun (|z|) của số phức sau.
a, z = 2 + 3i b, \(z=\left(2+3i\right)^3\)
c, \(z=\dfrac{2+3i}{1-2i}\) d, \(z=\sqrt{2}-\dfrac{4}{3}i\)
Tìm tất cả các số phức \(z\) thỏa mãn điều kiện:
\(\left|iz-1-3i\right|.\left|\overline{z}+1+i\right|=\left|z^2+\left(-6+2i\right)z+8-6i\right|\) và \(\dfrac{z-3}{z+2}\) là số thuần ảo.
Cho số phức z thoả mãn |\(z+\overline{z}+2\)| + \(2\left|z-\overline{z}-2i\right|\le12\). Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức \(P=\left|z-4-4i\right|\). Tính M+ m
Đặt \(z=x+yi\)
\(\left|x+yi+x-yi+2\right|+2\left|x+yi-x+yi-2i\right|\le12\)
\(\Leftrightarrow\left|2x+2\right|+4\left|\left(y-1\right)i\right|\le12\)
\(\Leftrightarrow\left|x+1\right|+2\left|y-1\right|\le6\)
Tập hợp z là miền trong hình thoi (gồm cả biên) với 4 đỉnh: \(A\left(-7;1\right)\) ; \(B\left(-1;4\right)\) ; \(C\left(5;1\right)\) ; \(D\left(-1;-2\right)\)
\(P^2=\left|z-4-4i\right|^2=\left(x-4\right)^2+\left(y-4\right)^2\) có tập hợp là đường tròn (C) tâm \(I\left(4;4\right)\) bán kính \(R=P>0\) sao cho (C) và hình thoi ABCD có ít nhất 1 điểm chung
Từ hình vẽ ta thấy \(P_{max}\) khi (C) đi qua A \(\Rightarrow P=IA\) và \(P_{min}\) khi (C) tiếp xúc BC \(\Rightarrow P=d\left(I;BC\right)\)
\(\overrightarrow{IA}=\left(-11;-3\right)\Rightarrow M=IA=\sqrt{130}\)
\(\overrightarrow{BC}=\left(6;-3\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtpt
Phương trình BC: \(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)
\(\Rightarrow m=d\left(I;BC\right)=\dfrac{\left|4+2.4-7\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\)
\(\Rightarrow M+m=\sqrt{130}+\sqrt{5}\)
tìm nghiệm nguyên
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\) = 1
Tìm nghiệm nguyên dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}=3\)
Câu 2/
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)
Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)
Xét \(x^2,y^2,z^2\ge1\)
Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)
\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)
\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)
Dấu = xảy ra khi \(x^2=y^2=z^2=1\)
\(\Rightarrow\left(x,y,z\right)=?\)
Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có
\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)
\(\Leftrightarrow x^4=3\left(l\right)\)
Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)
Bài 2/
Ta có: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)
Vậy phương trình không có nghiệm nguyên dương.
Em mới học lớp 5 thôi nên em không biết cái gì
~~~ Chúc chị học giỏi ~~~
Có bao nhiêu số phức z thỏa mãn \(\dfrac{z}{z^2+2\overline{z}}\) là số thực và \(\left(z+2\right)\left(\overline{z}+2i\right)\) là số thuần ảo?