Những câu hỏi liên quan
HN
Xem chi tiết
HN
Xem chi tiết
KY
1 tháng 7 2021 lúc 20:38

\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)

\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)

\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)

\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)

Bình luận (0)
NM
Xem chi tiết
TA
24 tháng 5 2020 lúc 7:58

- Ta có: \(\frac{2x+3}{x+1}=\frac{\left(2x+2\right)+1}{x+1}=\frac{2.\left(x+1\right)+1}{x+1}\)( ĐKXĐ: \(x\ne-1\))

- Để \(a\inℤ\)\(\Leftrightarrow\)\(\frac{2x+3}{x+1}\inℤ\)\(\Leftrightarrow\)\(\frac{2.\left(x+1\right)+1}{x+1}\inℤ\)

- Để \(\frac{2.\left(x+1\right)+1}{x+1}\inℤ\)\(\Leftrightarrow\)\(2.\left(x+1\right)+1⋮x+1\)mà \(2.\left(x+1\right)⋮x+1\)

\(\Rightarrow\)\(1⋮x+1\)\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)

+ Với \(x+1=1\)                                       + Với \(x+1=-1\)   

   \(\Leftrightarrow x=0\left(TM\right)\)                                      \(\Leftrightarrow x=-2\)

Vậy \(x\in\left\{-2,0\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
AA
Xem chi tiết
PS
Xem chi tiết
TT
Xem chi tiết
ND
Xem chi tiết
VD
Xem chi tiết
TN
22 tháng 8 2023 lúc 21:29

\(A=\dfrac{-6}{2x-3}\)

Để  \(A\in Z\) thì \(-6⋮\left(2x-3\right)\)

=> \(\left(2x-3\right)\in U\left(-6\right)=\left\{-1,-2,-3,-6,1,2,3,6\right\}\)

=> \(2x\in\left\{2,1,0,-3,4,5,6,9\right\}\)

=> \(x\in\left\{1,\dfrac{1}{2},0,\dfrac{-3}{2},2,\dfrac{5}{2},3,\dfrac{9}{2}\right\}\)

Mà \(x\in Z\Rightarrow x\in\left\{1,0,2,3\right\}\)

Vậy \(x\in\left\{1,0,2,3\right\}\) thì A thuộc Z

 

 

Bình luận (0)
NT
22 tháng 8 2023 lúc 21:29

\(A=\dfrac{-6}{2x-3}\inℤ\left(x\ne\dfrac{3}{2}\right)\)

\(\Rightarrow2x-3\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(\Rightarrow x\in\left\{1;2;\dfrac{1}{2};\dfrac{5}{2};0;3;-\dfrac{3}{2};\dfrac{9}{2}\right\}\)

\(\Rightarrow x\in\left\{1;2;0;3\right\}\left(x\inℤ\right)\)

Bình luận (0)
VD
22 tháng 8 2023 lúc 21:20

Giúp mình với 

Bình luận (0)
NH
Xem chi tiết
H24
30 tháng 1 2022 lúc 8:30

a) \(A=\dfrac{x+3}{x+2}=\dfrac{x-2+5}{x-2}=\dfrac{x-2}{x-2}+\dfrac{5}{x-2}=1+\dfrac{5}{x-2}\)

\(\Rightarrow5⋮x-2\Rightarrow x-2\inƯ\left(5\right)\)

\(Ư\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=1\\x=7\\x=-3\end{matrix}\right.\)

b) \(B=\dfrac{1-2x}{x+3}=\dfrac{-2x+1}{x+3}\)

\(B\in Z\Rightarrow-2x+1⋮x+3\)

\(\Rightarrow-2x-6+7⋮x+3\)

\(\Rightarrow-2\left(x+3\right)+7⋮x+3\)

\(\Rightarrow7⋮x+3\)

\(\Rightarrow x+3\inƯ\left(7\right)\)

\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3-1\\x+3=7\\x+3=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\\x=4\\x=-10\end{matrix}\right.\)

 

Bình luận (0)
NT
30 tháng 1 2022 lúc 8:29

\(A=\dfrac{x+3}{x-2}=\dfrac{x-2+5}{x-2}=1+\dfrac{5}{x-2}\)

Để \(A\in Z\) thì \(x-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

\(\Rightarrow x\in\left\{3;1;7;-3\right\}\)

Vậy \(x\in\left\{3;1;7;-3\right\}\) thì \(A\in Z\)

\(B=\dfrac{1-2x}{x+3}=\dfrac{-2x-6+7}{x+3}=\dfrac{-2\left(x+3\right)-7}{x+3}=-2+\dfrac{-7}{x+3}\)

Để \(B\in Z\) thì \(x+3\inƯ\left(-7\right)=\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{-2;-4;4;10\right\}\)

Vậy \(x\in\left\{-2;-4;4;10\right\}\) thì \(B\in Z\)

Bình luận (1)
LT
Xem chi tiết