Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
CQ
Xem chi tiết
NT
21 tháng 5 2022 lúc 10:50

Câu 1: 

c: 2x=3y

nên x/3=y/2

=>x/9=y/6

5y=3z

nên y/3=z/5

=>y/6=z/10

=>x/9=y/6=z/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)

Do đó: x=-63/5; y=-42/5; z=-14

Bài 2:

Gọi ba số lần lượt là a,b,c

Theo đề, ta có: 4/3a=b=3/4c

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)

\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)

Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)

=>a=9k; b=12k; c=16k

Theo đề, ta có: \(a^2+b^2+c^2=481\)

\(\Leftrightarrow81k^2+144k^2+256k^2=481\)

=>k2=1

Trường hợp 1: k=1

=>a=9; b=12; c=16

Trường hợp 2: k=-1

=>a=-9; b=-12; c=-16

 

Bình luận (0)
AD
Xem chi tiết
HN
10 tháng 8 2016 lúc 6:52

Bài 1 :

a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

 

Bình luận (0)
PL
Xem chi tiết
PN
8 tháng 11 2015 lúc 15:28

a. Ta có:

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c+a-b\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

và \(ab^2-ac^2-b^3+bc^2=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

Vậy, \(A=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{c-a}{-c-b}=\frac{a-c}{c+b}\)

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
H24
31 tháng 5 2020 lúc 18:37

Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)

Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:

Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:

\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)

Đây là điều hiển nhiên.

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
H24
Xem chi tiết
H9
23 tháng 7 2023 lúc 18:20

a) \(\dfrac{3a^2}{10b^3}\cdot\dfrac{15b}{9a^4}\)

\(=\dfrac{3a^2\cdot15b}{10b^3\cdot9a^4}\)

\(=\dfrac{1\cdot3}{2\cdot b^2\cdot3\cdot a^2}=\dfrac{3}{6a^2b^2}\)

b) \(\dfrac{x-3}{x^2}\cdot\dfrac{4x}{x^2-9}\)

\(=\dfrac{x-3}{x^2}\cdot\dfrac{4x}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{\left(x-3\right)\cdot4x}{x^2\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{4}{x\left(x+3\right)}\)

c) \(\dfrac{a^2-6x+9}{a^2+3a}\cdot\dfrac{2a+6}{a-3}\)

\(=\dfrac{\left(a-3\right)^2}{a\left(a+3\right)}\cdot\dfrac{2\cdot\left(a+3\right)}{a-3}\)

\(=\dfrac{\left(a-3\right)^2\cdot2\cdot\left(a+3\right)}{a\left(a+3\right)\left(a-3\right)}\)

\(=\dfrac{2\left(a-3\right)}{a}\)

d) \(\dfrac{x+1}{x}\cdot\left(x+\dfrac{2-x^2}{x^2-1}\right)\)

\(=\dfrac{\left(x+1\right)\cdot x}{x}+\dfrac{x+1}{x}\cdot\dfrac{2-x^2}{x^2-1}\)

\(=x+1+\dfrac{x+1}{x}\cdot\dfrac{2-x^2}{\left(x+1\right)\left(x-1\right)}\)

\(=x+\dfrac{2-x^2}{x\left(x-1\right)}\)

Bình luận (1)
PL
Xem chi tiết
PL
17 tháng 10 2019 lúc 21:03

\(^{2^{25}}\) là \(2^{25}\) mé các bạn, mình sợ mọi người nhầm

Bình luận (0)
H24
17 tháng 10 2019 lúc 21:15

Đợi tí nha bạn Phạm Mai Linh

Bình luận (0)
H24
17 tháng 10 2019 lúc 21:36

Câu 1 :                                               Bài giải

Theo đề bài : \(x\text{ : }y\text{ : }z=5\text{ : }4\text{ : }3\text{ }\Rightarrow\text{ }\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{5+4-3}=\frac{x+y-z}{6}=\frac{x-y+z}{5-4+3}=\frac{x-y+z}{4}\)

( Áp dụng t/c dãy tỉ số bằng nhau )

\(\Rightarrow\text{ }x+y-z=x-y+z\)

\(\Rightarrow\text{ }y=x-y+z+z-x=2z+y\)

\(A=\frac{x+2\cdot y-3\cdot z}{x-2\cdot y+3\cdot z}=\frac{\left(x+y-z\right)+\left(y-2z\right)}{\left(x-y+z\right)+\left(2z-y\right)}=\frac{\left(x+y-z\right)+\left(2z+y-2z\right)}{\left(x-y+z\right)+\left(2z-2z-y\right)}=\frac{\left(x+y-z\right)+y}{\left(x-y+z\right)+\left(-y\right)}\)

Đến đây chịu ! Nhưng giải gần xong rồi !

Bình luận (0)
HD
Xem chi tiết