Những câu hỏi liên quan
TC
Xem chi tiết
HV
30 tháng 11 2019 lúc 23:02

Đặt A=x^4-x^3+3x^2-2x+2

=(x^4+3x^2+2)-(x^3+2x)

=(x^4+x^2+2x^2+2)-x(x^2+2)

=(x^2+1)(x^2+2)-x(x^2+2)

=(x^2+2)(x^2-x+1)

Ta có x^2+2>=2>0;

x^2-x+1=(x^2-x+1/4)+3/4 =(x-1/2)^2+3/4>=3/4>0 

=> A>0  

Bình luận (0)
 Khách vãng lai đã xóa
DQ
Xem chi tiết
SK
15 tháng 7 2023 lúc 19:36

Có:

\(x\sqrt{x}+y\sqrt{y}-x\sqrt{y}-y\sqrt{x}\ge0\)

\(x\left(\sqrt{x}-\sqrt{y}\right)-y\left(\sqrt{x}-\sqrt{y}\right)\ge0\)

\(\left(x-y\right)\left(\sqrt{x}-\sqrt{y}\right)\ge0\)

\(\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\ge0\)

\(\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)\ge0\)  (luôn đúng)

Dấu = xảy ra khi x=y

Bình luận (0)
PT
Xem chi tiết
TM
21 tháng 2 2017 lúc 22:43

\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x

------------------

\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)

\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x

Bình luận (0)
DP
Xem chi tiết
XO
17 tháng 8 2021 lúc 18:34

Ta có : \(27xyz\le\left(x+y+z\right)^3\)

<=> \(\left(x+y+z\right)^3-27xyz\ge0\)

<=> (x + y)3 + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge0\)

=> x3 + y3 + 3xy(x + y) + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge\)

<=> (x3 + y3 + z3) + 3(x + y)[xy + z(x + y + z)] - 27xyz \(\ge0\)

<=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz   \(\ge0\)

mà  x + y \(\ge2\sqrt{xy}\)

Thật vậy x + y \(\ge2\sqrt{xy}\)

=> (x + y)2 \(\ge\)4xy 

<=> x2 - 2xy + y2  \(\ge\) 0

<=> (x - y)2 \(\ge\)0 (đúng \(\forall x;y>0\))

Tương tự ta được y + z \(\ge2\sqrt{yz}\)

z + x \(\ge2\sqrt{xz}\)

Khi đó 3(x + y)(y + z)(z + x) \(\ge3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=24xyz\)(dấu "=" xảy ra khi x = y = z)

=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz   \(\ge0\)

<=> (x3 + y3 + z3) + 24xyz - 27xyz \(\ge0\)

<=> x3 + y3 + z3 - 3xyz   \(\ge0\)

<=> (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2\(\ge\)0 (đúng)

=> ĐPCM

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NL
31 tháng 7 2016 lúc 1:09

A = 3 ( X^2 - 3/5 X + 1) = 3 ( X - 5/6 )^2 + 11/12 > 0 => đpcm
B = 4 (x^2 + 3/4 x + 1/2 ) = 4 (x+3/8)^2 + 23/16 > 0 => đpcm

Bình luận (0)
LL
Xem chi tiết
TV
5 tháng 11 2017 lúc 10:57

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

Bình luận (0)
NV
Xem chi tiết
JV
Xem chi tiết
NL
3 tháng 12 2021 lúc 10:44

- Với \(n=4\Rightarrow3^3>4.6\) (đúng)

- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\) 

- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)

Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:

\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)

\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)

Bình luận (0)
AD
Xem chi tiết
LL
24 tháng 9 2021 lúc 7:46

\(A=\left(x-1\right)\left(x-3\right)+2=x^2-4x+3+2=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1>0\forall x\)

Bình luận (0)