Những câu hỏi liên quan
LN
Xem chi tiết
PK
Xem chi tiết
NY
Xem chi tiết
NT
8 tháng 1 2021 lúc 8:43

Ta có: \(A=-2x^2-5x+3\)

\(=-2\left(x^2+\dfrac{5}{2}x-\dfrac{3}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\)

Ta có: \(\left(x+\dfrac{5}{4}\right)^2\ge0\forall x\)

\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2\le0\forall x\)

\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{5}{4}=0\)

hay \(x=-\dfrac{5}{4}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=-2x^2-5x+3\) là \(\dfrac{49}{8}\) khi \(x=-\dfrac{5}{4}\)

Bình luận (0)
PD
Xem chi tiết
HN
28 tháng 10 2016 lúc 20:30

1) \(A=x^2-4x+1\)

\(A=x^2-4x+4-3\)

\(A=\left(x^2-4x+4\right)-3\)

\(A=\left(x-2\right)^2-3\)

Ta có: \(\left(x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-2\right)^2-3\ge-3\) với mọi x

Vậy MIinA = -3 khi x = 2

2) \(B=-x^2+13x+2012\)

\(B=-x^2+13x-\frac{169}{4}+\frac{169}{4}+2012\)

\(B=-\left(x^2-13+\frac{169}{4}\right)+\left(\frac{169}{4}+2012\right)\)

\(B=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\)

Ta có: \(\left(x-\frac{13}{2}\right)^2\ge0\) với mọi x

\(-\left(x-\frac{13}{2}\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Vây \(Max\left(B\right)=\frac{8217}{4}\) khi \(x=\frac{13}{2}\)

 

 

 

Bình luận (0)
H24
Xem chi tiết
VM
13 tháng 3 2015 lúc 22:09

Có ( x+2011)^2 lon hon hoac bang 0

=> (x+ 2011)^2 -2012 lon hon hoac bang -2012

=>GTNN là -2012 hay x= -2011

Bình luận (0)
IS
27 tháng 2 2020 lúc 20:10

ta có (x+2011)^2 \(\ge0\)

=> \(\left(x+2011\right)^2-2012\ge-2012\)

=> dấu "=" xảy ra khi zà chỉ khi 

\(\left(x+2011\right)^2-2012=0\)

=\(x=-2011\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
NC
Xem chi tiết
AH
19 tháng 1 2021 lúc 1:12

Lời giải:

a) 

Áp dụng BĐT Bunhiacopxky:

\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)

\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)

Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$

b) 

Áp dụng BĐT Bunhiacopxky:

\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)

\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)

Vậy $B_{min}=-7; B_{\max}=3$

Bình luận (0)
HN
Xem chi tiết
TA
10 tháng 12 2016 lúc 22:46

là 1 nha

Bình luận (2)
PH
Xem chi tiết
DL
14 tháng 4 2021 lúc 21:30

X = 2011 nha bn !

Bình luận (0)
 Khách vãng lai đã xóa