\(\sqrt{1-x}+x=\sqrt{x-1}+2\)giúp em với
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải pt:
a) \(\sqrt{2x^2-3}\)=\(\sqrt{4x-3}\)
b) \(\sqrt{2x-1}\)=\(\sqrt{x-1}\)
c) \(\sqrt{x^2-x-6}\)=\(\sqrt{x-3}\)
d) \(\sqrt{x^2-x}\)=\(\sqrt{3x-5}\)
Giúp em với, anh thịnh giúp em xíu á
a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))
Vì hai vế ko âm, bp 2 vế ta được:
2x2 - 3 = 4x - 3
\(\Leftrightarrow\) 2x2 = 4x
\(\Leftrightarrow\) x2 = 2x
\(\Leftrightarrow\) x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy S = {2}
b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)
Vì hai vế ko âm, bp 2 vế ta được:
2x - 1 = x - 1
\(\Leftrightarrow\) x = 0 (KTM)
Vậy x = \(\varnothing\)
c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x - 6 = x - 3
\(\Leftrightarrow\) x2 - 2x - 3 = 0
\(\Leftrightarrow\) x2 - 3x + x - 3 = 0
\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 1) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy S = {3}
d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x = 3x - 5
\(\Leftrightarrow\) x2 - 4x + 5 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0
\(\Leftrightarrow\) (x - 2)2 + 1 = 0
Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!
Nguyễn Lê Phước Thịnh nhờ anh xíu ạ
Rút gọn các biểu thức sau:
a, \(\sqrt{\left(120-11\right)^2}+\sqrt{\left(10-\sqrt{120}\right)^2}\)
b, \(\sqrt{x+2+2\sqrt{x+1}-\sqrt{x+2+2\sqrt{x+1}}}\) ( với đk x \(\ge\) -1 )
Giúp em với !!
\(\sqrt{\left(120-11\right)^2}+\sqrt{\left(10-\sqrt{120}\right)^2}\)
\(=120-11+10+\sqrt{120}\)
\(=\sqrt{120}\left(\sqrt{120}+1\right)-1\)
\(a,=\left(120-11\right)+\left|10-\sqrt{120}\right|=109+\sqrt{120}-10=99+2\sqrt{30}\\ b,=\sqrt{\left(\sqrt{x+1}+1\right)^2-\left(\sqrt{x+1}+1\right)^2}=\sqrt{0}=0\)
Tìm giá trị lớn nhất của
H=\(\dfrac{\sqrt{x}}{3x+\sqrt{x}+1}\) khi x≥\(\dfrac{1}{2}\)
I=\(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}\) khi x≥9
Mọi người giúp em với em cần rất gấp ạ
2.
\(x-2\sqrt{x}=\sqrt{x}(\sqrt{x}-3)+\frac{1}{4}(\sqrt{x}-3)+\frac{3}{4}(\sqrt{x}+1)\)
\(\geq \frac{3}{4}(\sqrt{x}+1)\)
\(\Rightarrow I\leq \frac{\sqrt{x}+1}{\frac{3}{4}(\sqrt{x}+1)}=\frac{4}{3}\)
Vậy $I_{\max}=\frac{4}{3}$ tại $x=9$
1. Với $x\geq \frac{1}{2}$ thì:
\(3x+\sqrt{x}+1=(\sqrt{2x}-1)(\sqrt{\frac{9}{2}x}-1)+(1+\frac{5\sqrt{2}}{2})\sqrt{x}\)
\(\geq (1+\frac{5\sqrt{2}}{2})\sqrt{x}\)
\(\Rightarrow H=\frac{\sqrt{x}}{3x+\sqrt{x}+1}\leq \frac{\sqrt{x}}{(1+\frac{5\sqrt{2}}{2})\sqrt{x}}=\frac{1}{1+\frac{5\sqrt{2}}{2}}=\frac{5\sqrt{2}-2}{23}\)
Đây chính là $H_{\max}$. Giá trị này đạt tại $x=\frac{1}{2}$
bài 1 Giaỉ phương trình :
a ) \(\sqrt{2x+1}-\sqrt{x-2}=x+3\)
b ) \(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
c )\(2\sqrt{x+3}=9x^2-x-4\)
ai giúp em với ạ
a, ĐK: \(x\ge2\)
\(\sqrt{2x+1}-\sqrt{x-2}=x+3\)
\(\Leftrightarrow\dfrac{x+3}{\sqrt{2x+1}+\sqrt{x-2}}=x+3\)
\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x-2}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\sqrt{2x+1}+\sqrt{x-2}=1\left(vn\right)\end{matrix}\right.\)
Phương trình vô nghiệm.
b, ĐK: \(x\ge-1\)
\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{\left(x+3\right)\left(x+1\right)}\)
\(\Leftrightarrow-\sqrt{x+3}\left(\sqrt{x+1}-1\right)+2x\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)
c, ĐK: \(x\ge-3\)
\(2\sqrt{x+3}=9x^2-x-4\)
\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)
\(\Leftrightarrow\left(\sqrt{x+3}+1\right)^2=9x^2\)
\(\Leftrightarrow\left(\sqrt{x+3}+1-3x\right)\left(\sqrt{x+3}+1+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=3x-1\\\sqrt{x+3}=-3x-1\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}3x-1\ge0\\x+3=9x^2-6x+1\end{matrix}\right.\Leftrightarrow...\)
TH2: \(\left\{{}\begin{matrix}-3x-1\ge0\\x+3=9x^2+6x+1\end{matrix}\right.\Leftrightarrow...\)
Tự giải nha, t kh có máy tính ở đây.
Mọi người ơi, giúp em giải bài này chi tiết với ạ, em cảm ơn nhiều.
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
Mọi người ơi, giúp em giải thật chi tiết từng bước bài này với ạ. Em cảm ơn mọi người rất rất nhiều ạ!
\(\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\) Với x>0; x khác 1
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Mọi người giúp em với em cần rất gấp ạ
Tìm GTNN của M=\(\dfrac{2\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\) với x≥0,x≠1,x≠4
Biểu thức này ko tồn tại cả min lẫn max
\(\dfrac{1}{M}=\dfrac{\sqrt{x}-1}{2\sqrt{x}+4}=\dfrac{-\dfrac{1}{4}\left(2\sqrt{x}+4\right)+\dfrac{\sqrt{x}}{2}}{2\sqrt{x}+4}=-\dfrac{1}{4}+\dfrac{\sqrt{x}}{4\left(\sqrt{x}+2\right)}\)
Do \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}+2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\sqrt{x}}{4\left(\sqrt{x}+2\right)}\ge0\)
\(\Rightarrow\dfrac{1}{M}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(x=0\)
Rút gọn Y:
\(Y=\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)\
Các bạn ơi, giúp mình với :D
Các cô/ thầy hãy giúp em đi ạ :)))
Em xin chân thành cảm ơn :3 <3
giúp em bài này với ạ. có thể làm chi tiết nhất được ko ạ
em cảm ơn nhiều ạ
cho B=\(\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\) tìm ĐKXĐ
tính B với x=3
tìm x để \(\left|B\right|\) =\(\dfrac{1}{2}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
Thay x=3 vào B, ta được:
\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)