\(\frac{\sqrt{27}+2.43}{8.6\cdot1.13}\)
\(\frac{\sqrt{27}+2.43}{8.6\cdot1.13}\) A
\(\left(\sqrt{5}+\frac{2}{3}\right)\left(6.4-\frac{4}{7}\right)\) B
a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)
b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)
a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)
\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)
Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)
b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)
\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)
Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)
Tính: \(\frac{2\sqrt{8}-\sqrt{27}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
Tính: \(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}+\sqrt[3]{3-\sqrt{9+\frac{125}{27}}}}\)
\(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}\) + \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}\)
E = \(\sqrt[3]{4+\frac{5}{3}\sqrt{\frac{31}{3}}}\)+ \(\sqrt[3]{4-\frac{5}{3}\sqrt{\frac{31}{3}}}\)
\(E=\)( ghi đề vào đây )
\(E=\sqrt[3]{4+\frac{5}{3}.\frac{\sqrt{31}}{\sqrt{3}}}+\sqrt[3]{4-\frac{5}{3}.\frac{\sqrt{31}}{3}}\)
\(E=\sqrt[3]{4+\frac{5\sqrt{31}}{3\sqrt{3}}}+\sqrt[3]{4+\frac{5.\sqrt{31}}{3\sqrt{3}}}\)
\(E\approx1\)
\(E^3=4+\frac{5}{3}\sqrt{\frac{31}{3}}+4-\frac{5}{3}\sqrt{\frac{31}{3}}+3\sqrt[3]{\left(16-\frac{25}{9}.\frac{31}{3}\right)}\left(\sqrt[3]{4+\frac{5}{3}\sqrt{\frac{31}{3}}}+\sqrt[3]{4-\frac{5}{3}\sqrt{\frac{31}{3}}}\right)\)
\(\Leftrightarrow E^3=8-7E\)
\(\Leftrightarrow E^3+7E-8=0\)
\(\Leftrightarrow\left(E-1\right)\left(E^2+E+8\right)=0\)
\(\Leftrightarrow E=1\)
Tính C=\(\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}\)
Tính:
\(x=\sqrt[3]{6+\sqrt{\frac{847}{27}}}+\sqrt[3]{6-\sqrt{\frac{847}{27}}}\)
hình thức đăng vui phương pháp lập phương hai vế sau đó nhẩm nghiệm dùng tiếp sơ đồ hoc-ne :))) là ok
\(x^3=6+\sqrt{\frac{847}{27}}+6-\sqrt{\frac{847}{27}}+3.\sqrt[3]{\left[6^2-\left(\sqrt{\frac{847}{27}}\right)^2\right]}.x\)
\(\Rightarrow x^3=12+3.\sqrt[3]{\frac{125}{27}}x\)
\(\Leftrightarrow x^3-5x-12=0\)
\(\Leftrightarrow x^3-9x+4x-12=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+4\right)=0\).Vì \(x^2+3x+4=x^2+2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow x=3\)
Sao lại phân tích như thế????? Dòng thứ 4 ko biết dùng sơ đồ hoc-ne à?????
Chứng minh rằng: \(\sqrt[3]{\sqrt{\frac{2303}{27}+6}}-\sqrt[3]{\sqrt{\frac{2303}{27}-6}}\)6 là các số nguyên
Bạn không sửa thì m sửa.
Sửa đề: \(P=\sqrt[3]{\sqrt{\frac{2303}{27}}+6}-\sqrt[3]{\sqrt{\frac{2303}{27}}-6}\)
\(P^3=\sqrt{\frac{2303}{27}}+6-\left(\sqrt{\frac{2303}{27}}-6\right)-\frac{3.11.P}{3}\)
\(\Leftrightarrow P^3=12-11P\)
\(\Leftrightarrow P^3+11P-12=0\)
\(\Leftrightarrow\left(P-1\right)\left(P^2+P+12\right)=0\)
Vì \(P^2+P+12>0\) nên ta có
\(P=1\)
theo tớ là cậu chép sai đề rồi cậu chép lại đi
Tính Q=\(\frac{\sqrt{45+27\sqrt{2}}+\sqrt{45-27\sqrt{2}}}{\sqrt{5+3\sqrt{2}}-\sqrt{5-3\sqrt{2}}}-\frac{\sqrt{3+\sqrt{2}}+\sqrt{3-\sqrt{2}}}{\sqrt{3+\sqrt{2}}-\sqrt{3-\sqrt{2}}}\)