Những câu hỏi liên quan
DN
Xem chi tiết
H24
9 tháng 12 2016 lúc 18:45

x=2,5 bạn nhé

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LC
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Bình luận (0)
TP
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
CA
20 tháng 2 2021 lúc 17:33

LOADING...

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
NT
17 tháng 2 2022 lúc 12:57

\(\left\{{}\begin{matrix}x+my=3\\x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=2\\x=1-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{m-2}\\x=1-\dfrac{4}{m-2}=\dfrac{m-6}{m-2}\end{matrix}\right.\)

a, Ta có x < 0 ; y > 0 

\(x< 0\Rightarrow\dfrac{m-6}{m-2}< 0\)

Ta có : m - 2 > m - 6 

\(\left\{{}\begin{matrix}m-2>0\\m-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>2\\m< 6\end{matrix}\right.\Leftrightarrow2< m< 6\)

\(y>0\Leftrightarrow\dfrac{2}{m-2}>0\Rightarrow m>2\)

Vậy 2 < m < 6 

b, \(x-2y=3\Rightarrow\dfrac{m-6}{m-2}-\dfrac{4}{m-2}=3\Leftrightarrow\dfrac{m-10}{m-2}=3\)

\(\Rightarrow m-10=3m-6\Leftrightarrow2m=-4\Leftrightarrow m=-2\)

Bình luận (0)
LN
Xem chi tiết
CD
11 tháng 1 2021 lúc 22:54

Bình luận (0)
HH
Xem chi tiết
VH
27 tháng 7 2023 lúc 22:24

\(A=\dfrac{1}{x}+\dfrac{1}{4y}=\dfrac{4}{4x}+\dfrac{1}{4y}=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\)

Áp dụng BĐT Cauchy schwart, ta có:

\(A=\dfrac{2^2}{4x}+\dfrac{1^2}{4y}\ge\dfrac{\left(2+1\right)^2}{4\left(x+y\right)}=\dfrac{9}{4.2}=\dfrac{9}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{4x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x}=\dfrac{1}{4y}\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=4y\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\x+y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy, GTNN của \(A=\dfrac{9}{8}\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3},\dfrac{2}{3}\right)\)

Bình luận (1)
VH
28 tháng 7 2023 lúc 9:17

Áp dụng BĐT Cosi cho 2 cặp số dương là  \(\dfrac{1}{x};\dfrac{9}{16}x\) và \(\dfrac{1}{4y};\dfrac{9}{16}y\) , ta có:

\(\dfrac{1}{x}+\dfrac{9}{16}x\ge2\sqrt{\dfrac{1}{x}.\dfrac{9}{16}x}=2.\dfrac{3}{4}=\dfrac{3}{2}\)

\(\dfrac{1}{4y}+\dfrac{9}{16}y\ge2\sqrt{\dfrac{1}{4y}.\dfrac{9}{16}y}=2.\dfrac{3}{8}=\dfrac{3}{4}\)

Cộng vế theo vế ta được: \(\dfrac{1}{x}+\dfrac{1}{4y}+\dfrac{9}{16}\left(x+y\right)\ge\dfrac{3}{2}+\dfrac{3}{4}=\dfrac{9}{4}\)

\(\Leftrightarrow A+\dfrac{9}{16}.2\ge\dfrac{9}{4}\Leftrightarrow A\ge\dfrac{9}{4}-\dfrac{9}{8}=\dfrac{9}{8}\)

Dấu bằng xảy ra \(\Leftrightarrow\left(x,y\right)=\left(\dfrac{4}{3};\dfrac{2}{3}\right)\)

Bình luận (1)
H24
Xem chi tiết
AH
30 tháng 7 2021 lúc 11:21

Lời giải:

$x^2-x^2y-y+8x+7=0$

$\Leftrightarrow x^2+8x+7=y(x^2+1)$

$\Leftrightarrow y=\frac{x^2+8x+7}{x^2+1}$

$\Leftrightarrow y=\frac{(x^2+1)+8x+6}{x^2+1}=1+\frac{8x+6}{x^2+1}$

Áp dụng bđt AM-GM ta có:
$x^2+\frac{1}{4}\geq |x|\geq x$
$\Rightarrow x^2+1\geq x+\frac{3}{4}=\frac{4x+3}{4}$

$\Rightarrow \frac{8x+6}{x^2+1}\leq \frac{2(4x+3)}{\frac{4x+3}{4}}=8$

$\Rightarrow y\leq 1+8=9$

Vậy $y_{\max}=9$

$x^2=\frac{1}{4}$; $x\geq 0\Rightarrow x=\frac{1}{2}$

 

Bình luận (12)
H24
30 tháng 7 2021 lúc 12:00

pt\(\Leftrightarrow x^2\left(1-y\right)+8x+7-y=0\) (1)

Ta có :\(\Delta\)(x)=\(-y^2+8y+9\)(do làm biếng  nên làm ra denta luôn)

Để tồn tại MAX y thì PT (1) có ngiệm nên \(\Delta\ge0\) \(\Leftrightarrow-y^2+8y+9\ge0\)

\(\Leftrightarrow-y^2-y+9y+9\ge0\Leftrightarrow-y\left(y+1\right)+9\left(y+1\right)\ge0\)

\(\Leftrightarrow\left(y+1\right)\left(9-y\right)\ge0\)

Giải BPT ta được : \(-1\le y\le9\)

\(\Rightarrow\) Max y =9. Thay y=9 vào (1)\(\Rightarrow x=\dfrac{1}{2}\)

Vậy Max y=9\(\Leftrightarrow x=\dfrac{1}{2}\)

 

 

Bình luận (0)
SY
Xem chi tiết