Những câu hỏi liên quan
LH
Xem chi tiết
H24
20 tháng 5 2019 lúc 21:26

Trả lời: 

       Sorry, mk ms lớp 7,ko làm đc lớp 9!

Bình luận (0)
JD
20 tháng 5 2019 lúc 21:41

-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm

-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0

- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)

\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)

Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho

Bình luận (0)
LH
Xem chi tiết
H24
14 tháng 1 2018 lúc 20:36

viet dc k bạn

Bình luận (0)
NT
2 tháng 4 2018 lúc 17:33

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

Bình luận (0)
H24
2 tháng 4 2018 lúc 17:43

\(x^2-2\left(m-2\right)x+\left(m^2+2m-3\right)=0\)   \(\left(#\right)\)

từ pt \(\left(#\right)\) ta có  \(\Delta'=\left[-\left(m-2\right)\right]^2-m^2-2m+3\)

\(\Delta'=m^2-4m+4-m^2-2m+3\)

\(\Delta'=-6m+7\)

để pt  \(\left(#\right)\) có 2 nghiệm \(x_1,x_2\) thì \(\Delta'>0\)

\(\Leftrightarrow-6m+7>0\)

\(\Leftrightarrow-6m>-7\)

\(\Leftrightarrow m< \frac{7}{6}\)

theo định lí vi et \(\hept{\begin{cases}x_1+x_2=2m-4\\x_1.x_2=m^2+2m-3\end{cases}}\)

theo bài ra ta có \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

\(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)

\(\Leftrightarrow\left(x_1+x_2\right).5=\left(x_1.x_2\right)\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right).5-\left(x_1.x_2\right)\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(5-x_1.x_2\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left(5-m^2-2m+3\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left(m^2+2m-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2m-4=0\left(1\right)\\m^2+2m-8=0\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)  ta có \(m=2\)  ( KTM ) 

từ \(\left(2\right)\) ta có \(m^2+2m-8=0\)  \(\left(3\right)\)

từ pt \(\left(3\right)\)  ta có \(\Delta'=1^2-\left(-8\right)=1+8=9>0\Rightarrow\sqrt{\Delta'}=3\)

vì \(\Delta'>0\)  nên pt \(\left(3\right)\)  có 2 nghiệm phân biệt \(m_1=-2+3=1\)  ;  ( TM ) 

 \(m_2=-2-3=-5\)  ( TM ) 

vậy \(m_1=-5;m_2=1\)  là các giá trị cần tìm

Bình luận (0)
NV
Xem chi tiết
ML
11 tháng 7 2015 lúc 21:14

\(A=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\left[\frac{x_1^2+x^2_2}{x_1x_2}\right]^2-2=\left[\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right]^2-2\)

\(=\left[\frac{\left(2m-2\right)^2}{2m-5}-2\right]^2-2\)\(=\left(\frac{4m^2-8m+4}{2m-5}-2\right)^2-2=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

A nguyên khi \(\left(2m-1+\frac{9}{2m-5}\right)^2\in Z\)

\(\Leftrightarrow B=2m-1+\frac{9}{2m-5}=\frac{8m^2-12m+14}{2m-5}\)\(=\sqrt{k}\) với k là một số nguyên dương.

\(\Rightarrow8m^2-12m+14=\sqrt{k}\left(2m-5\right)\)\(\Leftrightarrow8m^2-2\left(6+\sqrt{k}\right)m+14+5\sqrt{k}=0\text{ (1)}\)

(1) có nghiệm m khi \(\Delta'=\left(\sqrt{k}+6\right)^2-8\left(14+5\sqrt{k}\right)\ge0\)

\(\Leftrightarrow k-28\sqrt{k}-76\ge0\Leftrightarrow\sqrt{k}\le14-4\sqrt{17}

Bình luận (0)
NM
Xem chi tiết
PQ
15 tháng 7 2019 lúc 17:57

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

Bình luận (0)
LT
Xem chi tiết
NV
2 tháng 3 2018 lúc 23:22

Sử dụng định lí Vi-ét:

\(\frac{2}{x_1}+\frac{2}{x_2}=3\Leftrightarrow\frac{2\left(x_1+x_2\right)}{x_1.x_2}=3\)(*)

Tính ∆' tìm điều kiện của m để phương trình có 2 nghiệm phân biệt.

Sau đó bạn viết định lí Vi-ét và áp dụng và (*) 

Kết hợp cả hai điều kiện lại là ra kết quả đúng.

Bình luận (0)
LT
4 tháng 3 2018 lúc 14:28

Cảm ơn ạ

Bình luận (0)
NL
Xem chi tiết
NL
15 tháng 12 2020 lúc 22:11

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

Bình luận (0)
TN
Xem chi tiết
NT
3 tháng 8 2023 lúc 22:14

a: Để phương trình có hai nghiệm trái dấu thì

m^2+2m+3<0

=>m^2+2m+1+2<0

=>(m+1)^2+2<0(vô lý)

b:

Δ=(2m+3)^2-4(m^2+2m+3)

=4m^2+12m+9-4m^2-8m-12

=4m-3

Để phương trình có hai nghiệm phân biệt thì 4m-3>0

=>m>3/4

4x1x2=(x1+x2)^2-2(x1+x2)+5

=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5

=>4m^2+8m+12=4m^2+12m+9-4m-6+5

=>8m+12=8m-1

=>12=-1(vô lý)

Bình luận (0)
HN
Xem chi tiết
NT
22 tháng 4 2023 lúc 10:54

Thay x=5 vào pt, ta được:

25-10(m+1)+m^2-4m+5=0

=>m^2-4m+30-10m-10=0

=>m^2-14m+20=0

=>\(m=7\pm\sqrt{29}\)

x1+x2=(2m+2)

=>x2+5=16+2 căn 29 hoặc x2+5=16-2 căn 29

=>x2=11+2căn 29 hoặc x2=11-2 căn 29

Bình luận (0)
H24
Xem chi tiết
MH
8 tháng 5 2022 lúc 21:09

Áp dụng hệ thức vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=-2m-5\end{matrix}\right.\)

Ta có:

\(x^2_1+x^2_2=18\)

\(\left(x_1+x_2\right)^2-2x_1.x_2=18\)

\(\left(2m-2\right)^2-2.\left(-2m-5\right)=18\)

\(4m^2-8m+4+4m+10-18=0\)

\(4m^2-4m+1=5\)

\(\left(2m-1\right)^2=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{5}+1}{2}\\m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

 

Bình luận (0)
DT
Xem chi tiết
NL
23 tháng 1 2024 lúc 17:42

\(\Delta'=\left(m-2\right)^2+5>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)

\(\left|\left|x_1\right|-\left|x_2\right|\right|=4\)

\(\Leftrightarrow\left(\left|x_1\right|-\left|x_2\right|\right)^2=16\)

\(\Leftrightarrow x_1^2+x_2^2-2\left|x_1x_2\right|=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=16\)

\(\Leftrightarrow4\left(m-2\right)^2-2.\left(-5\right)-2.\left|-5\right|=16\)

\(\Leftrightarrow\left(m-2\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}m-2=2\\m-2=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)

Bình luận (0)