Những câu hỏi liên quan
LM
Xem chi tiết
NT
23 tháng 12 2023 lúc 20:19

a: Thay m=-2 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-2y=-2+1=-1\\-2x+y=3\cdot\left(-2\right)-1=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y=-2\\-2x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\x-2y=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=3\\x=2y-1=2\cdot3-1=5\end{matrix}\right.\)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

\(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y=3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(-m^2+1\right)=3m-1-m^2-m=-m^2+2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\y\left(m-1\right)\left(m+1\right)=\left(m-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=m+1-m\cdot\dfrac{m-1}{m+1}=\left(m+1\right)-\dfrac{m^2-m}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m+1}\\x=\dfrac{m^2+2m+1-m^2+m}{m+1}=\dfrac{3m+1}{m+1}\end{matrix}\right.\)

\(x^2-y^2=4\)

=>\(\dfrac{\left(3m+1\right)^2-\left(m-1\right)^2}{\left(m+1\right)^2}=4\)

=>\(\dfrac{9m^2+6m+1-m^2+2m+1}{\left(m+1\right)^2}=4\)

=>\(8m^2+8m+2=4\left(m+1\right)^2\)

=>\(8m^2+8m+2-4m^2-8m-4=0\)

=>\(4m^2-2=0\)

=>\(m^2=\dfrac{1}{2}\)

=>\(m=\pm\dfrac{1}{\sqrt{2}}\)

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 7 2017 lúc 18:08

Ta có:  D = 1 − m m − 1 = m 2 − 1 ;   D x   = 0 − m m + 1 − 1 = m ( m + 1 ) ;   D y = 1 0 m m + 1 = m + 1

Nếu  D = 0 ⇔ m 2 - 1 = 0 ⇔ m = ± 1

Với  m = 1 ⇒ D x ≠ 0  nên hệ phương trình vô nghiệm.

Với  m = - 1 ⇒ D x = D y = 0  nên hệ phương trình có vô số nghiệm.

Đáp án cần chọn là: C

Bình luận (0)
VL
Xem chi tiết
NT
1 tháng 4 2022 lúc 12:35

a, bạn tự giải 

b, \(\left\{{}\begin{matrix}\left(m-1\right)y=m+1\\x=m-1+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{m+1}{m-1}\\x=\dfrac{m^2-2m+1+m+1}{m-1}=\dfrac{m^2-m+2}{m-1}\end{matrix}\right.\)

Thay vào ta được \(\left(\dfrac{m^2-m+2}{m-1}\right)^2+\dfrac{2014\left(m+1\right)}{m-1}=2015\)

bạn ktra lại đề nhé 

Bình luận (0)
TA
Xem chi tiết
DT
Xem chi tiết
NT
25 tháng 1 2021 lúc 19:12

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=8-y=8-\dfrac{1}{3}=\dfrac{23}{3}\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{23}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

b) Để hệ phương trình có nghiệm (1;3) thì 

Thay x=1 và y=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}m+12=9\\1+3m=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\3m=7\end{matrix}\right.\Leftrightarrow m\notin\varnothing\)

Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm (1;3)

Bình luận (0)
TT
25 tháng 1 2021 lúc 19:19

Thay m=1 vào hpt trên ta có:

1.x+4y=9 và x+1y=8

<=> x+4y=9 và x+y=8

<=>  x+4y=9 và 4x+4y=32

<=> -3x = -23 và  x+y=8

<=> x = \(\dfrac{23}{3}\) và y = \(\dfrac{1}{3}\)

b) Để hệ phương trình có nghiệm (1;3)

=> x = 1; y = 3

Thay x = 1; y = 3 vào hpt trên ta có:

       m1+43=9 và 1+m3=8

<=> m+12 = 9 và 1 + 3m = 8

<=> m = -3 và m = \(\dfrac{7}{3}\)

Vậy m \(\in\left\{-3;\sqrt{\dfrac{7}{3}}\right\}\) thì hệ phương trình có nghiệm (1;3)

c) mx+4y=9 và x+my=8 

SD phương pháp thế

Ra pt bậc nhất 1 ẩn: 8m - m2y + 4y = 9

                       <=> 8m -  y(m-4) = 9

Để hệ phương trình có nghiệm duy nhất => m-4 \(\ne\) 0

<=> m \(\ne\) 4

<=> m  \(\ne\) 2 và m  \(\ne\) -2

 

Bình luận (0)
LM
Xem chi tiết
NT
6 tháng 1 2024 lúc 18:39

a: Thay m=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x-y=3\cdot\left(-1\right)=-3\\-x-y=\left(-1\right)^2-2=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2y=-6\\x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=y-3=3-3=0\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 1 2017 lúc 16:46

Xét hệ  x + m y = m + 1     1 m x + y = 2 m     2

Từ (2) ⇒ y = 2m – mx thay vào (1) ta được:

x + m (2m – mx) = m + 1

⇔ 2 m 2 – m 2 x + x = m + 1 ⇔ ( 1 – m 2 ) x = − 2 m 2 + m + 1

( m 2 – 1 ) x = 2 m 2 – m – 1   ( 3 )

Hệ phương trình đã cho có nghiệm duy nhất  (3) có nghiệm duy nhất

m 2 – 1 ≠ 0 ⇔ m ≠ ± 1 ( * )

Khi đó hệ đã cho có nghiệm duy nhất  x = 2 m + 1 m + 1 y = m m + 1

Ta có

x ≥ 2 y ≥ 1 ⇔ 2 m + 1 m + 1 ≥ 2 m m + 1 ≥ 1 ⇔ − 1 m + 1 ≥ 0 − 1 m + 1 ≥ 0 ⇔ m + 1 < 0 ⇔ m < − 1

Kết hợp với (*) ta được giá trị m cần tìm là m < −1

Đáp án: B

Bình luận (0)
LM
Xem chi tiết
PB
Xem chi tiết
CT
15 tháng 9 2018 lúc 15:13

Từ phương trình (2) ta có y = 3m – 1 – mx. Thay vào phương trình (1) ta được:

x + m ( 3 m – 1 – m x ) = m + 1   ( m 2 – 1 ) x = 3 m 2 – 2 m – 1    (3)

Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất, tức là

m 2 – 1 ≠ 0 ⇔ m ≠ ± 1

Khi đó x = 3 m 2 − 2 m − 1 m 2 − 1 = m − 1 3 m + 1 m − 1 m + 1 = 3 m + 1 m + 1 y = 3 m − 1 − m . 3 m + 1 m + 1 = m − 1 m + 1

Hay x = 3 m + 1 m + 1 = 3 − 2 m + 1 y = m − 1 m + 1 = 1 − 2 m + 1

Vậy x, y nguyên khi và chỉ khi 2 m + 1 nguyên.

Do đó m + 1 chỉ có thể là −2; −1; 1; 2. Vậy m ∈ {−3; −2; 0} hoặc m = 1 (loại)

Đáp án:C

Bình luận (0)
NH
Xem chi tiết
NT
1 tháng 7 2023 lúc 13:44

a: Khi m=căn 2 thì hệ sẽ là:

2x-y=căn 2+1 và x+y*căn 2=2

=>\(\left\{{}\begin{matrix}2x-y=\sqrt{2}+1\\2x+2y\sqrt{2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y-2y\sqrt{2}=\sqrt{2}-3\\2x-y=\sqrt{2}+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-1+\sqrt{2}\\2x=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=\sqrt{2}-1\end{matrix}\right.\)

b: Để hệ có nghiệm thì 2/1<>-1/m

=>-1/m<>2

=>m<>-1/2

Bình luận (0)