Từ phương trình (2) ta có y = 3m – 1 – mx. Thay vào phương trình (1) ta được:
x + m ( 3 m – 1 – m x ) = m + 1 ( m 2 – 1 ) x = 3 m 2 – 2 m – 1 (3)
Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất, tức là
m 2 – 1 ≠ 0 ⇔ m ≠ ± 1
Khi đó x = 3 m 2 − 2 m − 1 m 2 − 1 = m − 1 3 m + 1 m − 1 m + 1 = 3 m + 1 m + 1 y = 3 m − 1 − m . 3 m + 1 m + 1 = m − 1 m + 1
Hay x = 3 m + 1 m + 1 = 3 − 2 m + 1 y = m − 1 m + 1 = 1 − 2 m + 1
Vậy x, y nguyên khi và chỉ khi 2 m + 1 nguyên.
Do đó m + 1 chỉ có thể là −2; −1; 1; 2. Vậy m ∈ {−3; −2; 0} hoặc m = 1 (loại)
Đáp án:C