Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

BM

cho hệ phương trình x+my=m+1 mx+y=3m-1

tìm m để hệ phương trình có một nghiệm duy nhất (x,y)thõa mãn xy đại giá trị nhỏ nhất

HN
2 tháng 11 2016 lúc 20:00

Hệ pt : \(\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\)

Xét pt đầu : \(x+my=m+1\Leftrightarrow x=m+1-my\) thay vào pt còn lại :

\(m\left(m+1-my\right)+y=3m-1\)

\(\Leftrightarrow y\left(1-m^2\right)=-m^2+2m-1\)

Nếu \(m=1\) thì pt có dạng 0.y = 0 => Vô số nghiệm.

Nếu m = -1 thì pt có dạng 0.x = -4 => vô nghiệm.

Xét với \(m\ne1\)\(m\ne-1\) thì pt có nghiệm \(y=\frac{-\left(m-1\right)^2}{\left(1-m\right)\left(1+m\right)}=\frac{m-1}{m+1}\)

\(\Rightarrow x=m+1-m\left(\frac{m-1}{m+1}\right)=m+1-\frac{m^2-m}{m+1}=\frac{m^2+2m+1-m^2+m}{m+1}=\frac{3m+1}{m+1}\)

Xét \(xy=\frac{\left(m-1\right)\left(3m+1\right)}{\left(m+1\right)^2}=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)

Đặt \(t=m+1\) thì \(m=t-1\) thay vào biểu thức trên được

\(\frac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\frac{3t^2-8t+4}{t^2}=\frac{4}{t^2}-\frac{8}{t}+3\)

Lại đặt \(a=\frac{1}{t}\) thì : \(4a^2-8a+3=4\left(a-1\right)^2-1\ge-1\)

Suy ra \(xy\ge-1\) . Dấu đẳng thức xảy ra khi \(a=1\Leftrightarrow t=1\Leftrightarrow m=0\)

Vậy với m = 0 thì xy đạt giá trị nhỏ nhất bằng -1

Bình luận (3)

Các câu hỏi tương tự
HT
Xem chi tiết
H24
Xem chi tiết
AS
Xem chi tiết
KR
Xem chi tiết
GT
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
KR
Xem chi tiết
VP
Xem chi tiết