tính giá trị biểu thức (2x + 3) ✖ (2x-3) - (2x+1)2 tại x= 1 phần 2
Bài 1: Tính giá trị của biểu thức: E=33.(2x/3 -1)+(15x²-10x):(-5x)-(3x-1) tại x=-2/3 Lưu ý: 2x phần 3 tất cả -1
\(E=33\left(\dfrac{2}{3}x-1\right)+\left(15x^2-10x\right):\left(-5x\right)-\left(3x-1\right)\)
\(=22x-33-3x+2-3x+1\)
\(=16x-30\)
tính giá trị của biểu thức :
A=3x^2+2x-1 tại trị tuyệt đối của x = 1phần 3
B=2x^+5x+4 phần x^2 -4x+3 vói x=-1
giúp mình vs ạ
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
tính giá trị biểu thức a) (2x+3).(2x-3)-(2x+1)2 tại x=1/2 b) (x-2)2 - (x-1).(x+1)-x.(1-x) tai x=5 c) (2x-1)2 + (x+1)2 +2.(2x-1).(x-1) tại x= -2 d) (2x-1)2 -2.(2x+3).(2x+5) +(2x+5)2 tại x=2022
câu 5
1, tính giá trị của biểu thức sau:
a, \(x^2+2x+1
tại
x=99\)
b, \(x^3-3x^2+3x-1
tại
x=101\)
2, tìm giá trị lớn nhất của biểu thức
\(A=
-x^2+2xy-4y^2+2x+10y-3\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
Tính giá trị biểu thức:
a) A = ( 2 m + 1 ) 2 + ( 3 m - 1 ) 2 +2(2m + 1)(3m - 1) tại m = 2;
b) B = ( 2 x - 3 ) 2 + ( 2 x + 3 ) 2 - 2(2x - 1)(2x + 4) tại x = 10.
a) Rút gọn A = ( 5 m ) 2 = 25 m 2 . Với m = 2 Þ A = 100.
b) Rút gọn B = -12x + 26. Với x = 10 Þ B = -94.
tính giá trị của biểu thức x^2-2x-3/x^2+2x+1 với x khác -1 tại 3x-1=0
Ta có: \(\dfrac{x^2-2x-3}{x^2+2x+1}=\dfrac{x^2+x-3x-3}{\left(x+1\right)^2}=\dfrac{x\left(x+1\right)-3\left(x+1\right)}{\left(x+1\right)^2}\)
\(=\dfrac{\left(x+1\right)\left(x-3\right)}{\left(x+1\right)^2}=\dfrac{x-3}{x+1}\left(dk:x\ne-1\right)\) (1)
Với \(x\ne-1\), ta có:
\(3x-1=0\Rightarrow3x=1\) \(\Rightarrow x=\dfrac{1}{3}\left(tm\right)\)
Thay \(x=\dfrac{1}{3}\) vào (1), ta được:
\(\dfrac{\dfrac{1}{3}-3}{\dfrac{1}{3}+1}=\left(\dfrac{1}{3}-3\right):\left(\dfrac{1}{3}+1\right)\)
\(=-\dfrac{8}{3}:\dfrac{4}{3}=-\dfrac{8}{3}\cdot\dfrac{3}{4}=-2\)
Vậy: ...
Cho biểu thức A = \(\dfrac{x+1}{2x+3}\) và biểu thức B = \(\dfrac{2x+3}{x+1}+\dfrac{x+2}{x+3}\)
a. Tìm điều kiện xác định của A và B
b. Tính giá trị của A tại x = -1 và giá trị của B tại x = -\(\dfrac{2}{3}\)
\(a,ĐK\left(A\right):x\ne-\dfrac{3}{2};ĐK\left(B\right):x\ne-1;x\ne-3\\ b,A=\dfrac{-1+1}{2\left(-1\right)+3}=0\\ B=\dfrac{2\left(-\dfrac{2}{3}\right)+3}{1-\dfrac{2}{3}}+\dfrac{2-\dfrac{2}{3}}{3-\dfrac{2}{3}}=\dfrac{3-\dfrac{4}{3}}{\dfrac{1}{3}}+\dfrac{4}{3}:\dfrac{7}{3}=\dfrac{5}{3}:\dfrac{1}{3}+\dfrac{4}{7}=5+\dfrac{4}{7}=\dfrac{39}{7}\)
Tính giá trị của biểu thức sau :
A= 2x^2y+xy-3xy tại x=-2 và y=4
B= (2x^2+x-1)-(x^2+5x-1) tại x=-2
C= -x^4+3x^2-x^3+3-2x-x^2+x4+x^3-2x^2 tại x=3/2
A = 2\(x^2\)y + \(xy\) - 3\(xy\)
Thay \(x\) = -2; y = 4 vào biểu thức A ta có:
A = 2\(\times\) (-2)2 \(\times\) 4 + (-2) \(\times\) 4 - 3 \(\times\) (-2) \(\times\) 4
A = 2 \(\times\) 4 \(\times\) 4 - 8 + 6 \(\times\) 4
A = 8 \(\times\) 4 - 8 + 24
A = 32 - 8 + 24
A = 24 + 24
A = 48
B = (2\(x^2\) + \(x\) - 1) - ( \(x^2+5x-1\) )
Thay \(x\) = - 2 vào biểu thức B ta có:
B = { 2\(\times\)(-2)2 + (-2) - 1} - { (-2)2 +5\(\times\)(-2) - 1}
B = { 2 \(\times\) 4 - 3} - { 4 - 10 - 1}
B = { 8 - 3} - { 4 - 11}
B = 5 - (-7)
B = 5 + 7
B = 12
Tính giá trị của biểu thức \(B=\dfrac{4x^{2024}\left(x+1\right)-2x^{2023}+2x+1}{2x^2+3x}\) tại \(x=\sqrt{\dfrac{1}{2\sqrt{3}}-\dfrac{3}{2\sqrt{3}+2}}\)
\(x=\sqrt{\dfrac{2\sqrt{3}+2-6\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2-4\sqrt{3}}{2\sqrt{3}\left(2\sqrt{3}+2\right)}}\) ko tồn tại vì 2-4căn 3<0