Những câu hỏi liên quan
H24
Xem chi tiết
NP
Xem chi tiết
PL
26 tháng 6 2019 lúc 9:04

\(a,\sqrt{\frac{5.\left(38^2-17^2\right)}{8.\left(47^2-19^2\right)}}\)

\(=\sqrt{\frac{5.\left(38-17\right)\left(38+17\right)}{8.\left(47-19\right)\left(47+19\right)}}\)

\(=\sqrt{\frac{5.21.55}{8.28.66}}\)

\(=\sqrt{\frac{5775}{14784}}=\frac{5\sqrt{231}}{2\sqrt{4370}}\)

Bình luận (0)
NP
26 tháng 6 2019 lúc 9:08

.bn tính lại \(\sqrt{14784}\)đi sao lạ vậy

Bình luận (0)
NT
Xem chi tiết
LH
23 tháng 6 2021 lúc 12:58

a) Áp dụng bđt AM-GM có:

\(\sqrt[3]{\left(9-x\right).8.8}\le\dfrac{9-x+8+8}{3}=\dfrac{25-x}{3}\)\(\Leftrightarrow\sqrt[3]{9-x}\le\dfrac{25-x}{12}\)

\(\sqrt[3]{\left(7+x\right).8.8}\le\dfrac{7+x+8+8}{3}=\dfrac{23+x}{3}\)\(\Leftrightarrow\sqrt[3]{7+x}\le\dfrac{23+x}{12}\)

Cộng vế với vế \(\Rightarrow\sqrt[3]{9-x}+\sqrt[3]{7+x}\le4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}9-x=8\\7+x=8\end{matrix}\right.\)\(\Rightarrow x=1\)

Vậy...

b)Đk:\(x\ge2\)

Pt \(\Leftrightarrow\left(x-1\right)^2.\left(x^2-4\right)=\left(x-2\right)^2.\left(x^2-1\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\left(x-1\right)\)

Do \(x\ge2\Rightarrow x-1>0\)

Chia cả hai vế của pt cho x-1 ta được:

\(\left(x-1\right)\left(x-2\right)\left(x+2\right)=\left(x-2\right)^2\left(x+1\right)\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x-1\right)\left(x+2\right)-\left(x-2\right)\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2+x-2-x^2+3x-2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\)

Vậy S={2}

c)Đk:\(\left\{{}\begin{matrix}9-x^2\ge0\\x^2-1\ge0\\x-3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Rightarrow x=3\)

Thay x=3 vào pt thấy thỏa mãn

Vậy S={3}

Bình luận (1)
MT
Xem chi tiết
TN
Xem chi tiết
LP
7 tháng 1 2021 lúc 11:06

a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)

=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)

=>\(17\sqrt{3x}=17\)

=>\(\sqrt{3x}=1\)

=>\(x=\dfrac{1}{3}\)

Bình luận (0)
LP
7 tháng 1 2021 lúc 11:16

b.Ta có:\(\sqrt{x^2-6x+9}=1\)

 

=>\(\sqrt{\left(x-3\right)^2}=1\)

=>\(\left|x-3\right|=1\)

Vậy có hai trường hợp:

TH1:\(x-3=1\)

=>\(x=4\)

TH2:\(x-3=-1\)

=>\(x=2\)

Bình luận (0)
NT
7 tháng 1 2021 lúc 12:59

a) ĐKXĐ: \(x\ge0\)

Ta có: \(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)

\(\Leftrightarrow2\cdot2\cdot\sqrt{3x}-3\cdot\sqrt{3x}+4\cdot4\cdot\sqrt{3x}=17\)

\(\Leftrightarrow4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)

\(\Leftrightarrow17\sqrt{3x}=17\)

\(\Leftrightarrow\sqrt{3x}=1\)

\(\Leftrightarrow3x=1\)

hay \(x=\dfrac{1}{3}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{3}\right\}\)

b) ĐKXĐ: \(x\in R\)

Ta có: \(\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow\left|x-3\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

Vậy: S={2;4}

Bình luận (0)
TM
Xem chi tiết
H24
21 tháng 5 2017 lúc 9:11

đây là PT sao lại giải BPT?

Bình luận (0)
TM
21 tháng 5 2017 lúc 13:33

sorry mih ghi nhầm bn ạ mà chẳng wan trọng lắm đâu bn cứ tập trung mà giải hộ mình cái phương trình ấy

Bình luận (0)
TN
21 tháng 5 2017 lúc 19:01

Đk:\(-\sqrt{17}\le x\le\sqrt{17}\)

Khi \(y=\sqrt{17-x^2}\ge0\) thì ta có hpt

\(\hept{\begin{cases}x+y+xy=9\\x^2+y^2=17\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x+y+xy=9\\\left(x+y\right)^2-2xy=17\end{cases}}\)

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\left(S^2\ge4P\right)\) ta có:

\(hpt\Leftrightarrow\hept{\begin{cases}S+P=9\\S^2-2P=17\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=9-P\\S^2-2P=17\end{cases}}\)

\(\Leftrightarrow\left(9-P\right)^2-2P=17\Leftrightarrow\left(P-4\right)\left(P-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}P=4\\P=16\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=9-P=9-4=5\\S=9-P=9-16=-7\left(loai\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y=5\\xy=4\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=4\\y=1\end{cases}}\\\hept{\begin{cases}x=1\\y=4\end{cases}}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y=5\\xy=4\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=4\\y=1\end{cases}}\\\begin{cases}x=1\\y=4\end{cases}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=4\\y=1\end{cases};\hept{\begin{cases}x=1\\y=4\end{cases}}}\) (thỏa mãn)

Bình luận (0)
AG
Xem chi tiết
HC
Xem chi tiết
NL
26 tháng 11 2019 lúc 14:29

ĐKXĐ: ....

Đặt \(x+\sqrt{17-x^2}=a\ge-\sqrt{17}\Rightarrow x\sqrt{17-x^2}=\frac{a^2-17}{2}\)

Phương trình trở thành:

\(a+\frac{a^2-17}{2}=9\Leftrightarrow a^2+2a-35=0\Rightarrow\left[{}\begin{matrix}a=5\\a=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x+\sqrt{17-x^2}=5\)

\(\Leftrightarrow\sqrt{17-x^2}=5-x\)

\(\Leftrightarrow17-x^2=x^2-10x+25\)

\(\Leftrightarrow2x^2-10x+8=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
GB
Xem chi tiết
AH
10 tháng 3 2018 lúc 18:37

Lời giải:

ĐKXĐ:......

Ta có: Đặt \(y=\sqrt{17-x^2}\Rightarrow x^2+y^2=17\)

Ta chuyển phương trình về hệ phương trình:

\(\left\{\begin{matrix} x+y+xy=9\\ x^2+y^2=17\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy=9-(x+y)\\ (x+y)^2-2xy=17\end{matrix}\right.\)

\(\Rightarrow (x+y)^2-2[9-(x+y)]=17\)

\(\Leftrightarrow (x+y)^2+2(x+y)-35=0\)

\(\Leftrightarrow (x+y-5)(x+y+7)=0\)

Nếu \(x+y=5\Rightarrow xy=9-5=4\)

Theo định lý Viete đảo thì $x,y$ là nghiệm của PT: \(X^2-5X+4=0\)

\(\Rightarrow (x,y)=(1,4)\Leftrightarrow (x,\sqrt{17-x^2})=(1,4)\)

\(\Rightarrow x=1\)

Nếu \(x+y=-7\Rightarrow xy=9-(-7)=16\)

Vì \(x+y<0; y\geq 0\Rightarrow x< 0\Rightarrow xy\leq 0\Leftrightarrow 16\leq 0\) (vô lý nên loại)

Vậy \(x=1\)

Bình luận (1)