AD

giải phương trình

\(x+\sqrt{17-x^2}+x\cdot\sqrt{17-x^2}=9\)

LF
1 tháng 10 2016 lúc 17:44

Đk:\(-\sqrt{17}\le x\le\sqrt{17}\)

Đặt \(t=x+\sqrt{17-x^2}\left(t>0\right)\)

\(\Rightarrow t^2=17+2x\sqrt{17-x^2}\)

\(\Rightarrow x\sqrt{17-x^2}=\frac{t^2-17}{2}\)

thay vào pt 

\(t+\frac{t^2-17}{2}=9\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-7\left(loai\right)\\t=5\left(tm\right)\end{array}\right.\)

\(\Rightarrow x+\sqrt{17-x^2}=5\)

\(\Leftrightarrow\sqrt{17-x^2}=5-x\)

Với \(x< \sqrt{17}\) bình 2 vế ta có:

\(17-x^2=x^2-10x+25\)

\(\Leftrightarrow2x^2-10x+8=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{cases}\left(tm\right)}\)

 

Bình luận (0)
LF
1 tháng 10 2016 lúc 17:45

dòng cuối là \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=4\end{array}\right.\)(thỏa mãn)

Bình luận (0)

Các câu hỏi tương tự
MM
Xem chi tiết
TN
Xem chi tiết
AD
Xem chi tiết
AD
Xem chi tiết
TN
Xem chi tiết
NK
Xem chi tiết
TP
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết