Hãy chứng tỏ trên hình vẽ dưới dây AB // CD
Hãy chứng tỏ trên hình vẽ dưới đây ta có AB // CD
Có: \(\widehat{BCA}+\widehat{ACD}=30+80=110\)
\(\widehat{ABC}+\widehat{BCD}=70+110=180\)
=>AB//CD ( Cặp góc trong cùng phía bù nhau)
Xét \(\Delta ABC\) có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( bđt \(\Delta\))
\(\Rightarrow\widehat{A}+70^0+30^0=180^0\)
\(\Rightarrow\widehat{A}=80^0\)
\(\Rightarrow\widehat{A}=\widehat{ACB}\)
Mà \(\widehat{A};\widehat{ABC}\) đồng vị
=> AB // CD
Giải:
Ta có: \(\widehat{BAC}+\widehat{ACD}=\widehat{BCD}\)
hay \(30^o+80^o=\widehat{BCD}\)
\(\Rightarrow\widehat{BCD}=110^o\)
Ta thấy \(\widehat{BCD}+\widehat{ABC}=180^o\) mà 2 góc này ở vị trí trong cùng phía nên suy ra
AB // CD
Vậy AB // CD
Cho hình vẽ dưới dây, hãy chứng tỏ a//b
Tính góc D ^ 4 = 180 ° − 40 ° = 140 ° ( kề bù) mà D ^ 4 , C 4 ^ là 2 góc đồng vị => a // b
hãy chứng minh trên hình vẽ dưới đây ta có AB song song CD
Gọi Ax đối AB
\(\Rightarrow\widehat{xAE}=180^0-\widehat{BAE}=80^0\left(kề.bù\right)\\ \Rightarrow\widehat{xAC}=\widehat{EAC}-\widehat{xAE}=120^0-80^0=40^0\\ \Rightarrow\widehat{xAC}+\widehat{ACD}=40^0+140^0=180^0\)
Mà 2 góc này ở vị trí trong cùng phía nên Ax//CD
Mà Ax đối AB nên AB//CD
Gọi I là trung điểm của dây cung AB không đi qua tâm của (O; R) . Qua I vẽ dây CD
a) chứng tỏ CD>=AB. Tìm độ dài nhỏ nhất , lớn nhất của các dây quay quanh I
b) cho R=5cm; OI=4cm. Tính độ dài dây cung ngắn nhất qua I
c) chứng tỏ: góc OAI > góc ODI
Cho đường tròn (O) đường kính AB. Vẽ dây CD vuông góc với AB tại điểm E trên AB. H là hình chiếu của điểm I trên AD. Chứng minh rằng trên đường thẳng HE đi qua trung điểm M của BC.
1 . Cho hình vuông ABCD. Gọi O là giao điểm của hai đường chéo. Qua điểm C kẻ đường thẳng Cx song song với BD; Cx cắt AB tại E.
a) Chứng minh tam giác ACE vuông cân
b) Gọi F là điểm đối xứng của O qua AB. Tứ giác AOBF là hình gì? Vì sao?
c) Giả sử APCQ là hình thoi có chung đường chéo AC với hình vuông ABCD. Hãy chứng tỏ 4 điểm P, D, B, Q thẳng hàng
Bài 2:Đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. D là một điểm trên đường tròn có đường kính OC (D khác A và B). CD cắt cung AB của đường tròn (O) tại E (E nằm giữa C và D). Chứng minh:
a) Góc BED = góc DAE
b) DE2 = DA.DB
Bài 3:Cho (O) dây AB vuông góc dây CD M là trung điểm BC. Chứng minh rằng OM=1/2AD
Cho nửa đường tròn tâm O đường kính AB , dây CD có độ dài không đổi và khác AB . Gọi I là hình chiếu vuông góc của O trên dây CD . a) Chứng minh I là trung điểm của CD . b) Gọi H K, theo thứ tự là hình chiếu vuông góc của A B, trên CD . Chứng minh I là trung điểm của HK . c) Gọi E là hình chiếu vuông góc của I trên AB . Chứng minh rằng . Diện tích tam giác ACB.diện tích tam giác ADB=IO.AB d*) Tìm vị trí của dây CD để diện tích của tứ giác AHKB là lớn nhất? Làm ơn giúp mình câu c,d với ạ. Mình xin chân thành cảm ơn
Cho hình vẽ, biết AB //CD. Chứng tỏ: E A B ^ + E C D ^ + A E C ^ = 360 °
Kẻ Ex // AB // CD.
Vì AB // Ex nên E A B ^ + E 1 ^ = 180 ° ( hai góc trong cùng phía)
Vì CD // Ex nên E C D ^ + E 2 ^ = 180 ° ( hai góc trong cùng phía)
⇒ E A B ^ + E 1 ^ + E C D ^ + E 2 ^ = 180 ° + 180 °
Mà E 1 ^ + E 2 ^ = A E C ^ . Vậy E A B ^ + E C D ^ + A E C ^ = 360 °
Cho (O) đường kính AB. Trên AB lấy một điểm E. Qua E vẽ dây CD vuông góc với AB. Vẽ các dây DN; CM đi qua F. Chứng minh rằng NI = IM
I ở đâu bà nội ??? Hỏi thế thánh nào trả lời đc
À quên. I là giao của AB và MN. Mà ko cần trl đâu, t lm đc bài này r