Những câu hỏi liên quan
NL
Xem chi tiết
NL
15 tháng 9 2017 lúc 5:59

giúp tớ với nhé!

Bình luận (0)
HL
8 tháng 2 2021 lúc 14:47

Bài 5:

Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825

=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683

=> abc chia 1987 dư 304. Mà abc nhỏ nhất

=> abc = 304
Vậy số tự nhiên là 11111304

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
NH
30 tháng 6 2017 lúc 11:33

Ta có :

\(1abc.2=abc8\)

\(\Leftrightarrow\left(1000+abc\right).2=10.abc+8\)

\(\Leftrightarrow2000+2.abc=10.abc+8\)

\(\Leftrightarrow10.abc-2.abc=10.abc+8\)

\(\Leftrightarrow10.abc-2.abc=2000-8\)

\(\Leftrightarrow8.abc=1992\)

\(\Leftrightarrow abc=249\)

Vậy số \(abc\) cần tìm là \(249\)

Bình luận (0)
BB
21 tháng 8 2017 lúc 21:46

Ấn gì vậy chả hiểuhiu

 

Bình luận (1)
TH
Xem chi tiết
NT
28 tháng 3 2023 lúc 21:04

Theo đề, ta có: 100a+10b+c=11(a+b+c)

=>89a-b-10c=0

Do 10c+b<100 nên 89a<100 

=>a<=1

=>a=1

=>89a=10z+y

=>z=8; y=9

=>198

Bình luận (0)
KH
Xem chi tiết
NH
22 tháng 12 2022 lúc 13:57

A =      \(\overline{abc}\) + \(\overline{cba}\) 

A = 100a + 10b +c + 100c +  10b + a

A =   100( a +c) + (c+a) + 20b

A = (a+c) (100 +1) + 20b

A = 9.101 + 20b

A = 909 + 20b

Để A là một số có 3 chữ số thì A \(\le\) 999

\(\Leftrightarrow\) 909 + 20b \(\le\) 999

\(\Leftrightarrow\) 20b \(\le\) 90

\(\Leftrightarrow\)\(\le\) 9/2

\(\Leftrightarrow\) b \(\in\) { 0; 1; 2; 3; 4}

 

Bình luận (0)
HH
Xem chi tiết
RR
17 tháng 5 2018 lúc 22:04

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)

Giải sử S là số chính phương 

=> 3(a + b + c )  \(⋮\)  37 

   Vì 0 < (a + b + c ) \(\le27\)

=> Điều trên là vô lý 

Vậy S không là số chính phương

Bình luận (0)
TV
18 tháng 5 2018 lúc 19:16

2/            Gọi số đó là abc

Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)

\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)

Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

Bình luận (0)
HK
Xem chi tiết
NK
Xem chi tiết
HK
Xem chi tiết
NH
Xem chi tiết
NL
9 tháng 7 2021 lúc 15:47

\(P=\dfrac{100a+10b+c}{a+b+c}\le\dfrac{100a+100b+100c}{a+b+c}=100\)

\(P_{max}=100\) khi \(b=c=0\)

Mặt khác ta có \(\left\{{}\begin{matrix}a\ge1\\c\le9\end{matrix}\right.\) \(\Rightarrow9a\ge c\Rightarrow90a\ge10c>9c\)

\(\Rightarrow P=\dfrac{10a+90a+10b+c}{a+b+c}>\dfrac{10a+9c+10b+c}{a+b+c}=10\)

Hay \(P-10>0\)

Ta cần tìm số k lớn nhất sao cho: \(\dfrac{100a+10b+c}{a+b+c}\ge k\) đồng thời \(10< k\le100\)

\(\Leftrightarrow100a+10b+c\ge ka+kb+kc\)

\(\Leftrightarrow\left(100-k\right)a\ge\left(k-10\right)b+\left(k-1\right)c\)

Mà \(\left\{{}\begin{matrix}\left(100-k\right)a\ge100-k\\\left(k-10\right)b+\left(k-1\right)c\le\left(k-10\right).9+\left(k-1\right).9=18k-99\end{matrix}\right.\)

\(\Rightarrow100-k\ge18k-99\Rightarrow k\le\dfrac{199}{19}\)

\(\Rightarrow k=\dfrac{199}{19}\)

Hay \(P_{min}=\dfrac{199}{19}\) khi \(\overline{abc}=199\)

Bình luận (1)