1. Rút gọn:
a. I x I + I x-1 I.
b. I 3x + 2 I - (x + 1).
I 7+5x I = 1-4x
I 4x^2 - 2x I + 1 = 2x
I x^2 - 5x + 4 I = x+4
I 4 - 3x I = 3x -4
I 1+5x I = 1 + 5x
I x^2 - 3x + 1 I = 2x-3
I x-1 I = x^2 -x
|7 + 5x| = 1 - 4x
=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)
=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)
|4x2 - 2x| + 1 = 2x
=> |4x2 - 2x| = 2x - 1
=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)
Vậy ...
rút gọn biểu thức sau:
A=I-x-1.3I+I-2.5I với x<-1.3
B=Ix-1/7I-I+3/5I với-3/5<x<1/7
C=I-x+1/7I+I-x-3/5I-2/6 với-3/5<x<1/7
Tìm x :
a, | x - 1 | + | x - 2 | = 1
b, | + 1 | + 2| x + 2 | = 3x + 5
a ) \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1=VP\)
Đẳng thức xảy ra khi \(\left(x-1\right)\left(2-x\right)\ge0\Rightarrow1\le x\le2\)
c ) \(VT=\left|x+1\right|+\left|2x+4\right|\ge\left|x+1+2x+4\right|=\left|3x+5\right|\ge3x+5=VP\)
Đẳng thức xảy ra khi \(\begin{cases}\left(x+1\right)\left(2x+4\right)\ge0\\3x+5\ge0\end{cases}\Rightarrow x\ge1\)
a) (x+1/x-2)^2 + x+1/x-4 -3(2x-4/x-4)^2 = 0
b) 15x/x^2 +3x-4 - 1 = 12(1/x+4 + 1/3x-3)
c) x^2-4x+1/x+1 + 2 = - x^2-5x+1/2x+1
1,Tìm x,biết:
a)/3x-2/-1=x
b)/x+2/+/x+3 phần 5/+/x+1 phần 2/=4x
A=3 I x-1 I -2 I 5-3x I
B=4 I x-3 I +2 I 2x -1 I +I 4-3x I
A=(3x-3)-(10-6x)
=3x-3-10+6x
=6x+3x-3-10
=9x-13
B=(4x-12)+(4x-2)+(4-3x)
=4x-12+4x-2+3-3x
=5x-11
Rút gọn:
A = 2 I x - 1 I - 5x
B = 3x - 2 - I 2 - 3x I
C = I 2x - 1 I - I 1 - 3x I
D = 5x - 2 - I 1 - 5x I + I 2 - 3 x I
Tớ đang gấp lắm, giúp tớ với !!
Giải phương trình:
1, \(3x^2+6x-3=\sqrt{\dfrac{x+7}{3}}\) (2 cách khác nhau )
2, \(\left(\sqrt{3x+1}-\sqrt{x-2}\right)\left(\sqrt{3x^2+7x+2}+4\right)=4x-2\)
3, \(\sqrt{-3x-1}+\sqrt{9x^2+9x+3}=-9x^2-6x\)
4, \(\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{5x^2-1}\)
5, \(\left(\sqrt{x+4}+2\right)\left(x+2\sqrt{x-5}+1\right)=6x\)
6, \(\sqrt{5-x^4}-\sqrt[3]{3x^2-2}=1\)
7, \(3x^2+11+\sqrt{x-2}+\sqrt{2x+3}=14x\)
8, \(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-7}}}}=7\)
9, \(\sqrt{2x^2-1}+3x\sqrt{x^2-1}=3x^3+2x^2-9x-7\) ( với \(x>0\) )
2.(x-3)-3.(3-x)=15-3x
(x+1).(x+2)<0
(x^2 + 1 ) . ( x+2)>0