Những câu hỏi liên quan
HP
Xem chi tiết
PA
25 tháng 2 2018 lúc 14:27

\(x^4+2x^3+8x^2+10x+15=0\)

\(\Leftrightarrow\left(x^4+5x^2\right)+\left(2x^3+10x\right)+\left(3x^2+15\right)=0\)

\(\Leftrightarrow x^2\left(x^2+5\right)+2x\left(x^2+5\right)+3\left(x^2+5\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x+3\right)=0\)

mà ta có: \(x^2+5\ge5>0;x^2+2x+3=\left(x+1\right)^2+1\ge1>0\)

nên suy ra phương trình vô nghiệm.

Bình luận (0)
DH
Xem chi tiết
AH
28 tháng 11 2021 lúc 0:14

Lời giải:

1. 

PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$

$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)

$\Leftrightarrow (t-4)(t+6)=0$

$\Rightarrow t-4=0$ hoặc $t+6=0$

Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$

$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$

Nếu $t+6=0$

$\Leftrightarrow x^2+5x+6=0$

$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$

2.

PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$

$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)

$\Leftrightarrow (t-1)(t+3)=0$

$\Rightarrow t-1=0$ hoặc $t+3=0$

Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$

$\Rightarrow x=0$ hoặc $x=4$

Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$

$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$

Bình luận (0)
NN
Xem chi tiết
H24
28 tháng 2 2017 lúc 7:19

\(x^4+2x^3+8x^2+10x+15=\left(x^4+2x^3+x^2\right)+\left(7x^2+10x+15\right)\)

\(\Leftrightarrow\left(x^2+x\right)^2+2.4.\left(x^2+x\right)+16=x^2-2x+1\\ \)

\(\left(x^2+x+4\right)^2=\left(x-1\right)^2\)

\(\left[\begin{matrix}x^2+x+4=x-1\left(1\right)\\x^2+x+4=1-x\left(2\right)\end{matrix}\right.\)

\(\left[\begin{matrix}\left(1\right)\Leftrightarrow x^2=-5\\\left(x+1\right)^2=-3\end{matrix}\right.\)Vo. No

Bình luận (1)
LM
28 tháng 2 2017 lúc 17:48

(x^4+2x^3+3x^2)+(5x^2+10x+15)=0

x^2(x^2+2x+3)+5(x^2+2x+3)=0

(x^2+2x+3)(x^2+5)=0

x^2+2x+3=0 hoặc x^2+5=0

Mà:x^2+2x^3+3=(x+1)^2+2>0 suy ra pt vô nghiệm.

x^2+5>0 suy ra pt vô nghiệm.

Vậy pt đã cho vô nghiệm.

Nhớ chọn đúng nha chó yến như :p :p :p

Bình luận (2)
H24
Xem chi tiết
NH
3 tháng 8 2020 lúc 8:18

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
3 tháng 8 2020 lúc 8:20

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
3 tháng 8 2020 lúc 8:22

\(a,5x\left(x-2020\right)+x=2020\)

\(< =>5x\left(x-2020\right)+x-2020=0\)

\(< =>\left(5x+1\right)\left(x-2020\right)=0\)

\(< =>\orbr{\begin{cases}5x+1=0\\x-2020=0\end{cases}}\)

\(< =>\orbr{\begin{cases}5x=-1\\x=2020\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=2020\end{cases}}}\)

\(b,4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(< =>4\left(x^2-20x+25\right)-\left(4x^2+4x+1\right)=0\)

\(< =>4x^2-80x+100-4x^2-4x-1=0\)

\(< =>-84x+99=0< =>84x=99< =>x=\frac{99}{84}\)

Bình luận (0)
 Khách vãng lai đã xóa
QT
Xem chi tiết
ZZ
15 tháng 1 2019 lúc 20:32

\(a,x^2-10x-39=0\)

\(\Leftrightarrow x^2-10x-39+64=64\)

\(\Leftrightarrow x^2-10x+25=64\)

\(\Leftrightarrow\left(x-5\right)^2=64\)

làm nốt

Bình luận (0)
PH
15 tháng 1 2019 lúc 20:33

\(x^2-10x-39=0\Leftrightarrow x^2-13x+3x-39=0\Leftrightarrow x\left(x-13\right)+3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=13\\x=-3\end{cases}}\)

Bình luận (0)
ZZ
15 tháng 1 2019 lúc 20:34

\(b,\frac{x^2}{x^3-9}=\frac{1}{x+3}\)

\(\Leftrightarrow x^2\left(x+3\right)=x^3-9\)

\(\Leftrightarrow x^3+3x^2=x^3-9\)

\(\Leftrightarrow3x^2=-9\left(VL\right)\)

Bình luận (0)
TT
Xem chi tiết
TH
24 tháng 1 2021 lúc 17:21

(4x - 3)2 - (2x + 1)2 = 0

\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0

\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...

3x - 12 - 5x(x - 4) = 0

\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0

\(\Leftrightarrow\) -5x2 + 23x - 12 = 0

\(\Leftrightarrow\) 5x2 - 23x + 12 = 0

\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0

\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0

\(\Leftrightarrow\) (x - 4)(5x - 3) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy ...

(8x + 2)(x2 + 5)(x2 - 4) = 0

\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0

Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x

\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt!

Bình luận (0)
NT
24 tháng 1 2021 lúc 18:08

a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)

\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)

b) Ta có: \(3x-12-5x\left(x-4\right)=0\)

\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)

c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)

mà \(2>0\)

và \(x^2+5>0\forall x\)

nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)

Bình luận (0)
NN
Xem chi tiết
NL
25 tháng 4 2019 lúc 17:43

\(x^4+4x^3+4x^2-14x^2-28x-15=0\)

\(\Leftrightarrow\left(x^2+2x\right)^2-14\left(x^2+2x\right)-15=0\)

Đặt \(x^2+2x=a\Rightarrow a^2-14a-15=0\Rightarrow\left[{}\begin{matrix}a=-1\\a=15\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+2x=-1\\x^2+2x=15\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\x^2+2x-15=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-5\\x=3\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
ND
4 tháng 5 2018 lúc 22:42

1. \(x^4-2x^3+3x^2-2x+1=0\)

\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)+x^2=0\)

\(\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2+x^2=0\)

\(\Leftrightarrow\) (x - 1)2 = 0 và x2 = 0

\(\Leftrightarrow\) x - 1 = 0 và x = 0

\(\Leftrightarrow\) x = 1 và x = 0 (vô lí)

Vậy phương trình vô nghiệm.

Bình luận (0)
ND
4 tháng 5 2018 lúc 22:53

2. \(\left(x^2-4\right)^2=8x+1\)

\(\Leftrightarrow x^4-8x^2+16=8x+1\)

\(\Leftrightarrow x^4-8x^2-8x+15=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2-7x^2+7x-15x+15=0\)

\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-7x\left(x-1\right)-15\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-7x-15\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4x^2-12x+5x-15\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+4x\left(x-3\right)+5\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+4x+5\right)=0\)

\(\Leftrightarrow\) x - 1 = 0 hoặc x - 3 = 0 hoặc x2 + 4x + 5 = 0

1) x - 1 = 0 \(\Leftrightarrow\) x = 1

2) x - 3 = 0 \(\Leftrightarrow\) x = 3

3) \(x^2+4x+5=0\left(\text{loại vì }x^2+4x+5=\left(x+2\right)^2+1>0\forall x\right)\)

Vậy tập nghiệm của pt là S = {1;3}.

Bình luận (0)
LA
Xem chi tiết
LG
20 tháng 7 2018 lúc 11:51

(x^4+2x^3+3x^2)+(5x^2+10x+15)=0

x^2(x^2+2x+3)+5(x^2+2x+3)=0

(x^2+2x+3)(x^2+5)=0

x^2+2x+3=0 hoặc x^2+5=0

Mà:x^2+2x^3+3=(x+1)^2+2>0 suy ra pt vô nghiệm.

x^2+5>0 suy ra pt vô nghiệm.

Vậy pt đã cho vô nghiệm.

gg.com hí hí 

Bình luận (0)