Giúp vs mn ơi, cháy nhà đế nơi rồi:
Tìm m để \(\sqrt{x}+\sqrt{4-x}=m\)có nghiệm duy nhất
Giúp mình với đang rất gấp rồi
Tìm m để phương trình có nghiệm duy nhất
a.\(\sqrt{1-x^2}+2\sqrt[3]{1-x^2}=m\)
b. \(\sqrt[4]{x}+\sqrt[4]{1-x}+\sqrt{x}+\sqrt{1-x}=m\)
Câu a. Giả sử có m thỏa mãn đề bài, khi đó sẽ có số \(a\ge0\)để \(\sqrt{1-x^2}=a\)hay \(1-x^2=a^2\)
Suy ra: \(x^2=1-a^2\).
Nếu a > 1 thì không có x thỏa mãn.
Nếu a = 1 thì x = 0 ( duy nhất).
Nếu \(0\le a< 1\)thì \(x=\sqrt{1-a^2}\)hoặc \(x=-\sqrt{1-a^2}\). Rõ ràng hai giá trị này là phân biệt.
Vậy chỉ khi a = 1 thì x = 0 duy nhất. Khi đó m = 3 .
Ngược lại thay m = 3 vào phương trình ta có: \(\sqrt{1-x^2}+2\sqrt[3]{1-x^2}=3.\)
Đặt \(1-x^2=a^6\), thay vào phương trình ban đầu ta có:
\(a^3+2a^2=3\Leftrightarrow\left(a-1\right)\left(a^2-a+3\right)=0\)
Vậy a = 1 hay \(1-x^2=1\)suy ra x = 0 là nghiệm duy nhất.
Câu b ta đặt: \(\sqrt{x}+\sqrt{1-x}=a\)sau đó bình phương hai vế lên ta được 1 phương trình bậc hai theo tham số a.
Dùng điều kiện \(\Delta=0\)ta sẽ tìm được a.
Tìm m để pt có nghiệm duy nhất: \(\sqrt[4]{x}+\sqrt[4]{1-x}+\sqrt{x}+\sqrt{1-x}=m\)
Tìm m để pt có nghiệm duy nhất :
\(\sqrt[4]{x}+\sqrt[4]{1-x}+\sqrt{x}+\sqrt{1-x}=m\)
Ta nhận thấy nếu \(x_0\) là nghiêm của phương trình thì \(1-x_0\) cũng là nghiệm. Để phương trình có nghiệm duy nhất thì \(x_0=1-x_0\to x_0=\frac{1}{2}\to m=\sqrt[4]{\frac{1}{2}}+\sqrt[4]{\frac{1}{2}}+\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{2}}=2\sqrt[4]{\frac{1}{2}}+2\sqrt{\frac{1}{2}}\)
Vậy \(m=\sqrt[4]{8}+\sqrt{2}.\)
Tìm m để phương trình sau có nghiệm duy nhất
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)
viết lại đề à????????
Định m để hệ có nghiệm duy nhất
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{1-y}=m+1\\\sqrt{1-x}+\sqrt{y}=m+1\end{matrix}\right.\)
ĐKXĐ : \(0\le x,y\le1\)
Ta có :
\(\sqrt{x}+\sqrt{1-y}=m+1;\sqrt{y}+\sqrt{1-x}=m+1\\ \Rightarrow\sqrt{x}+\sqrt{1-y}=\sqrt{y}+\sqrt{1-x}\Rightarrow\sqrt{x}-\sqrt{y}=\sqrt{1-x}-\sqrt{1-y}\)
\(TH1:\ 1\ge x>y\ge0\Rightarrow\sqrt{x}>\sqrt{y};\sqrt{1-x}< \sqrt{1-y}\\ \Rightarrow\sqrt{x}-\sqrt{y}>0;\sqrt{1-x}-\sqrt{1-y}< 0\\ \Rightarrow\sqrt{x}-\sqrt{y}>\sqrt{1-x}-\sqrt{1-y}\left(VL\right)\)
\(TH2:\ 1\ge y>x\ge0. Tương\ tự:vôlý\)
TH3: x=y. Khi đó hệ phương trình trở thành
\(\sqrt{x}+\sqrt{1-x}=m+1\)
Áp dụng bất đẳng thức \(\sqrt{A+B}\le\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\) ta có:
\(1\le m+1\le\sqrt{2}\Leftrightarrow0\le m\le\sqrt{2}-1\)
tìm m để pt có nghiệm duy nhất
\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)
ĐKXĐ: \(x^2-2mx+m^2-3m+2>0\)
\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm
- Với \(x\ge0\)
\(\Rightarrow x=x^2-2mx+m^2-3m+2=0\)
\(\Rightarrow x^2-\left(2m+1\right)x+m^2-3m+2=0\) (1)
+ Với \(m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
\(m=1\Rightarrow x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) có 2 nghiệm (ktm)
\(m=2\Rightarrow x^2-5x=0\Rightarrow x=\left\{0;5\right\}\) ktm
+ Với \(m^2-3m+2\ne0\)
\(\Rightarrow\) pt đã cho có nghiệm duy nhất khi \(\left(1\right)\) có đúng 1 nghiệm dương
\(\Rightarrow x_1x_2=m^2-3m+2< 0\)
\(\Rightarrow1< m< 2\)
tìm m để pt có nghiệm duy nhất
\(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}=\sqrt{x-2}\)
\(dk:x>2\)
\(pt\Leftrightarrow x^2-2\left(m+1\right)x+6m-2=x-2\)
\(\Leftrightarrow x^2-\left(2m+3\right)x+6m=0\left(1\right)\)
\(TH1:\)\(\Delta=0\Rightarrow\left(2m+3\right)^2-24m=0\Leftrightarrow m=\dfrac{3}{2}\Rightarrow x=\dfrac{2.3}{2}+3=6>2\left(thỏa\right)\)
\(TH2:x1\le2< x2\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-2\right)\left(x2-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m+3\right)^2-24m>0\\x1x2-2\left(x1+x2\right)+4\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{3}{2}\\m< \dfrac{3}{2}\end{matrix}\right.\\6m-2\left(2m+3\right)+4\le0\Leftrightarrow m\le1\end{matrix}\right.\)\(\Leftrightarrow m\le1\)
\(\Rightarrow m\in(-\text{∞};1]\cup\left\{\dfrac{3}{2}\right\}\)
ĐKXĐ: \(x>2\)
\(Pt\Rightarrow x^2-2\left(m+1\right)x+6m-2=x-2\)
\(\Leftrightarrow f\left(x\right)=x^2-2\left(m+1\right)x+6m=0\)
\(\Delta'=\left(m+1\right)^2-6m=m^2-4m+1\)
TH1: pt trên có nghiệm kép và \(-\dfrac{b}{2a}>2\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-4m+1=0\\m+1>2\end{matrix}\right.\) \(\Rightarrow m=2+\sqrt{3}\)
TH2: pt có 1 nghiệm bằng 2, 1 nghiệm lớn hơn 2
\(\Rightarrow4-4\left(m+1\right)+6m=0\Rightarrow m=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) (ktm)
TH3: pt có 2 nghiệm thỏa mãn \(x_1< 2< x_2\)
\(\Rightarrow f\left(2\right)< 0\Rightarrow2m< 0\Rightarrow m< 0\)
Vậy \(\left[{}\begin{matrix}m< 0\\m=2+\sqrt{3}\end{matrix}\right.\)
Tìm m sao cho : \(\sqrt{4+x}+\sqrt{4-x}+2\sqrt{16-x^2}=m\)có nghiệm duy nhất
1. Tìm m để pt \(\left(x^2+2x\right)^2-\left(x^2+2x\right)-m=0\)
a .có 4 nghiệm pb
b. vô ng
c. có nghiệm duy nhất
d. có nghiệm
e. có nghiệm kép
2. Biết pt: \(x+\sqrt{2x+11}=0\) có nghiệm \(x=a+b\sqrt{3}\). Tính ab
HELP ME
Bài 2.
ĐK: $x\geq \frac{-11}{2}$
$x+\sqrt{2x+11}=0\Leftrightarrow x=-\sqrt{2x+11}$
\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=2x+11\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-11=0(*)\end{matrix}\right.\)
\(\Delta'(*)=12\)
\(\Rightarrow x=1\pm \sqrt{12}=1\pm 2\sqrt{3}\). Với điều kiện của $x$ suy ra $x=1-2\sqrt{3}$
$\Rightarrow a=1; b=-2\Rightarrow ab=-2$
Bài 1.
Đặt $x^2+2x=t$ thì PT ban đầu trở thành:
$t^2-t-m=0(1)$
Để PT ban đầu có 4 nghiệm phân biệt thì:
Trước tiên PT(1) cần có 2 nghiệm phân biệt. Điều này xảy ra khi $\Delta (1)=1+4m>0\Leftrightarrow m> \frac{-1}{4}(*)$
Với mỗi nghiệm $t$ tìm được, thì PT $x^2+2x-t=0(2)$ cần có 2 nghiệm $x$ phân biệt.
Điều này xảy ra khi $\Delta '(2)=1+t>0\Leftrightarrow t>-1$
Vậy ta cần tìm điều kiện của $m$ để (1) có hai nghiệm $t$ phân biệt đều lớn hơn $-1$
Điều này xảy ra khi \(\left\{\begin{matrix} (t_1+1)(t_2+1)>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1t_2+t_1+t_2+1>0\\ t_1+t_2+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m+1+1>0\\ 1+2>0\end{matrix}\right.\Leftrightarrow m< 2(**)\)
Từ $(*); (**)\Rightarrow \frac{-1}{4}< m< 2$
b)
Để pt ban đầu vô nghiệm thì PT(1) vô nghiệm hoặc có 2 nghiệm $t$ đều nhỏ hơn $-1$
PT(1) vô nghiệm khi mà $\Delta (1)=4m+1<0\Leftrightarrow m< \frac{-1}{4}$
Nếu PT(1) có nghiệm thì $t_1+t_2=1>-2$ nên 2 nghiệm $t$ không thể cùng nhỏ hơn $-1$
Vậy PT ban đầu vô nghiệm thì $m< \frac{-1}{4}$
c) Để PT ban đầu có nghiệm duy nhất thì:
\(\left\{\begin{matrix} \Delta (1)=1+4m=0\\ \Delta' (2)=1+t=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=-\frac{1}{4}\\ t=-1\end{matrix}\right.\).Mà với $m=-\frac{1}{4}$ thì $t=\frac{1}{2}$ nên hệ trên vô lý. Tức là không tồn tại $m$ để PT ban đầu có nghiệm duy nhất.
d)
Ngược lại phần b, $m\geq \frac{-1}{4}$
e)
Để PT ban đầu có nghiệm kép thì PT $(2)$ có nghiệm kép. Điều này xảy ra khi $\Delta' (2)=1+t=0\Leftrightarrow t=-1$
$t=-1\Leftrightarrow m=(-1)^2-(-1)=2$