DY

tìm m để pt có nghiệm duy nhất

\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)

NL
9 tháng 11 2021 lúc 18:31

ĐKXĐ: \(x^2-2mx+m^2-3m+2>0\)

\(\dfrac{x}{\sqrt{x^2-2mx+m^2-3m+2}}=\sqrt{x^2-2mx+m^2-3m+2}\)

- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm

- Với \(x\ge0\)

\(\Rightarrow x=x^2-2mx+m^2-3m+2=0\)

\(\Rightarrow x^2-\left(2m+1\right)x+m^2-3m+2=0\) (1)

+ Với \(m^2-3m+2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\) 

\(m=1\Rightarrow x^2-3x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) có 2 nghiệm (ktm)

\(m=2\Rightarrow x^2-5x=0\Rightarrow x=\left\{0;5\right\}\) ktm

+ Với \(m^2-3m+2\ne0\)

\(\Rightarrow\) pt đã cho có nghiệm duy nhất khi \(\left(1\right)\) có đúng 1 nghiệm dương

\(\Rightarrow x_1x_2=m^2-3m+2< 0\)

\(\Rightarrow1< m< 2\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
Xem chi tiết
DT
Xem chi tiết
FF
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết