Ôn thi vào 10

RC

Định m để hệ có nghiệm duy nhất
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{1-y}=m+1\\\sqrt{1-x}+\sqrt{y}=m+1\end{matrix}\right.\)

H24
12 tháng 4 2021 lúc 21:17

ĐKXĐ : \(0\le x,y\le1\)

Ta có : 

 \(\sqrt{x}+\sqrt{1-y}=m+1;\sqrt{y}+\sqrt{1-x}=m+1\\ \Rightarrow\sqrt{x}+\sqrt{1-y}=\sqrt{y}+\sqrt{1-x}\Rightarrow\sqrt{x}-\sqrt{y}=\sqrt{1-x}-\sqrt{1-y}\)

 \(TH1:\ 1\ge x>y\ge0\Rightarrow\sqrt{x}>\sqrt{y};\sqrt{1-x}< \sqrt{1-y}\\ \Rightarrow\sqrt{x}-\sqrt{y}>0;\sqrt{1-x}-\sqrt{1-y}< 0\\ \Rightarrow\sqrt{x}-\sqrt{y}>\sqrt{1-x}-\sqrt{1-y}\left(VL\right)\)

\(TH2:\ 1\ge y>x\ge0. Tương\ tự:vôlý\)

TH3: x=y. Khi đó hệ phương trình trở thành

\(\sqrt{x}+\sqrt{1-x}=m+1\)

Áp dụng bất đẳng thức \(\sqrt{A+B}\le\sqrt{A}+\sqrt{B}\le\sqrt{2\left(A+B\right)}\) ta có:

\(1\le m+1\le\sqrt{2}\Leftrightarrow0\le m\le\sqrt{2}-1\)

Bình luận (1)
H24
12 tháng 4 2021 lúc 21:29

undefined

Bình luận (0)

Các câu hỏi tương tự
TC
Xem chi tiết
DF
Xem chi tiết
UI
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
MP
Xem chi tiết
NL
Xem chi tiết