giải bpt: : (x-1)(3-x)(2x+3)>0
Giải bpt
x^3 - 2x^2 + 5x - 6 <0
|x-1| > | x+2| -3
giải BPT : a) (1-x)(2x+5) > 0 b) (3-x)(x+5) < 0 c) (3x-7)(5-x) > 0
GIải hộ mình với nha cảm ơn nhiều ạ <3
Giải bpt: (x2 + 5)(2x + 3)(3x - 1) < 0
\(\left(x^2+5\right)\left(2x+3\right)\left(3x-1\right)< 0\)
Do \(\left(x^2+5\right)>0\)
\(\Rightarrow bpt\Leftrightarrow\left(2x+3\right)\left(3x-1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3>0\\3x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3< 0\\3x-1>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{-3}{2}\\x< \frac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{-3}{2}\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-3}{2}< x< \frac{1}{3}\left(chon\right)\\\frac{1}{3}< x< \frac{-3}{2}\left(loai\right)\end{matrix}\right.\)
Vậy...
Giải bpt: \(\dfrac{\left(3-2x-x^2\right)\sqrt{2x-1}}{\sqrt{2x-1}}\)≥0
\(\sqrt{2x-1}\ge0\)
\(\Rightarrow BPT\ge0\) khi
\(3-2x-x^2\ge0\)
\(\Leftrightarrow x^2+2x-3\le0\)
\(\Leftrightarrow\left(x+1\right)^2-4\le0\)
\(\Leftrightarrow\left(x+1\right)^2\le4\)
\(\Leftrightarrow x+1\le2\)
\(\Rightarrow x\le1\)
Giải BPT :
a. (x-1)(2x-3) lớn hơn hoặc bằng 0
b. x-7/10-x lớn hơn hoặc bằng 0
đề = x-1>=0 \(\rightarrow\)x>=1
2x-3>=0\(\rightarrow\)x>=1,5
so sánh điều kiện S=(1;1,5)
ta thay đấu() = đấu ngoặc nhọn
giải các bpt sau
a,\(\dfrac{x^2+2x-13}{x-1}< 1\)
b,\(\dfrac{3x^2+x-4}{x-1}< 3\)
c,\(\dfrac{2x^2-3x+1}{x+2}>0\)
d,\(\dfrac{x^2-x-6}{x^2-1}\le1\)
a: =>\(\dfrac{x^2+2x-13-x+1}{x-1}< 0\)
=>\(\dfrac{x^2+x-12}{x-1}< 0\)
=>\(\dfrac{\left(x+4\right)\left(x-3\right)}{x-1}< 0\)
=>1<x<3 hoặc x<-4
b: =>\(\dfrac{3x^2+4x-3x-4}{x-1}< 3\)
=>3x+4<3
=>3x<-1
=>x<-1/3
c: TH1: 2x^2-3x+1>0 và x+2>0
=>(2x-1)(x-1)>0 và x+2>0
=>x>1
TH2: (2x-1)(x-1)<0 và x+2<0
=>x<-2 và 1/2<x<1
=>Loại
4. Tìm tất cả các giá trị thực của tham số m để hàm số y= ✓m -2x - ✓x+1 có tâpk xác định là 1 đoạn trên trục số
6. Tìm bâts phương trình tương đương vs bpt 2x + 3/2x -4 < 3+ 3/2x -4
8. Tìm bpt tương đương vs bpt 2x -1> hoặc bằng 0
11. Tìm bpt tương đương vs bpt (x+1)√x < hoặc bằng 0
13. Với giá trị nào của a thì 2 bpt (a+1)x -a + 2>0 và (a+1)x - a +3 >0
1.Tìm tập nghiệm D của bpt |2x-1|≤x+2.
2.Tìm m để (m+2)x²-3x+2m-3=0 có 2 nghiệm trái dấu.
3.Tìm tập nghiệm của bpt 5x-1>2x/5+3.
4.Tìm tập nghiệm S của bpt (2x+1)² -3(x-3)>4x²+10.
5.Tìm tập nghiệm S của bpt 1<1/1-x.
6.Tìm tập nghiệm S của bpt (x-5)²(x-3)/x+1≤0.
1.
- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)
- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)
Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)
2.
Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)
3.
\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)
4.
\(4x^2+4x+1-3x+9>4x^2+10\)
\(\Leftrightarrow x>0\)
5.
\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)
6.
\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)