Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LN
Xem chi tiết
LL
2 tháng 10 2021 lúc 15:03

a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)

\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)

d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Bình luận (0)
SP
Xem chi tiết
H24
11 tháng 5 2019 lúc 20:35

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

Bình luận (0)
TP
12 tháng 5 2019 lúc 8:00

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Bình luận (0)
QN
Xem chi tiết
H24
5 tháng 3 2018 lúc 18:51

\(A=\left(y^2+2xy+x^2\right)+\left(2x^2+4x+2\right)-2\)

\(A=\left(y+x\right)^2+2\left(x+1\right)^2-2\)

\(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow A\ge-2\)

GTNN A =-2 khi x =-1;y=1

Bình luận (0)
ND
Xem chi tiết
NA
24 tháng 12 2018 lúc 14:26

Ta có:

A= \(3x^2-2xy+y^2-4x+5\)

= \(x^2-2xy+y^2+2\left(x^2-2x+1\right)+3\)

= \(\left(x-y\right)^2+2\left(x-1\right)^2+3\)

\(\left(x-y\right)^2\ge0;2\left(x-1\right)^2\ge0\)

\(\Rightarrow\) GTNN của A là 3.

Dấu "=" xảy ra khi x=y=1

Bình luận (0)
DS
Xem chi tiết
LH
23 tháng 6 2017 lúc 8:28

a) \(2x^2+y^2+4x-2y-2xy+10\)

\(=x^2+x^2+y^2+4x-2y-2xy+4+6\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)-2\left(y-3\right)\)

\(=\left(x-y\right)^2+\left(x+2\right)^2-2\left(y-3\right)\)

.......................chắc không phải cách làm này đâu!

b) \(5x^2+y^2+2xy-4x\)

\(=x^2+4x^2+y^2+2xy-4x\)

\(=\left(x^2+2xy+y^2\right)+x^2-4x\)

\(\left(x+y\right)^2+x^2-4x\)

Bình luận (0)
TP
20 tháng 3 2019 lúc 11:35

a, \(2x^2\)+\(y^2\)+\(4x-2y-2xy+10\)\(=y^2\)\(-x^2\)\(-1+2x-2y-2xy+3x^2+2x+11\)\(=\left(y-x-1^{ }\right)^2\)\(+3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{32}{3}\)\(=\left(y-x-1\right)^2+3\left(x+\frac{1}{3}\right)^2+\frac{32}{3}\)\(\ge\frac{32}{3}\)

VẬY GTNN CỦA BIỂU THỨC \(=\frac{32}{3}\)KHI \(y-x-1=0;x+\frac{1}{3}=0\Rightarrow x=\frac{-1}{3};y=\frac{2}{3}\)

Bình luận (0)
TP
20 tháng 3 2019 lúc 11:43

b, \(5x^2+y^2+2xy-4x=x^2+2xy+y^2+4x^2-4x+1-1=\)\(\left(x+y\right)^2+\left(2x-1\right)^2-1\)\(\ge-1\)

Vậy GTNN của biểu thức =-1 khi x+y=0;2x-1=0\(\Rightarrow\)x=\(\frac{1}{2}\);y=\(\frac{-1}{2}\)

Bình luận (0)
HN
Xem chi tiết
TN
Xem chi tiết
H24

Bài 1: Tìm x, y nguyên biết :

a) 4x + 2xy + y = 7

   => 2.x(y-2)+(y-2)=5

    => ( y-2)(2x+1)= 5

    Ta có bảng sau:

     

2x+1-5-115
y-2-1-551
x-3-102
y1-373

 

Điều kiện: t/m

Vậy:....

phần b và c tương tự

Bình luận (1)
NT
10 tháng 5 2023 lúc 14:25

b: =>x(3-y)+2y-6=-2

=>-x(y-3)+2(y-3)=-2

=>(y-3)(x-2)=2

=>\(\left(x-2;y-3\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;5\right);\left(4;4\right);\left(1;1\right);\left(0;2\right)\right\}\)

c: =>x(3y+2)+y+2/3=-4+2/3=-10/3

=>(y+2/3)(3x+1)=-10/3

=>(3x+1)(3y+2)=-10

=>\(\left(3x+1;3y+2\right)\in\left\{\left(1;-10\right);\left(10;-1\right);\left(-2;5\right);\left(-5;2\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;-4\right);\left(3;-1\right);\left(-1;1\right);\left(-2;0\right)\right\}\)

Bình luận (0)
SP
Xem chi tiết
NL
13 tháng 5 2019 lúc 15:42

\(A=x^2+y^2+2xy+4x+4y+4+y^2+2y+1+14\)

\(A=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)

\(B=2\left(x^2+xy+\frac{y^2}{4}\right)+\frac{1}{2}\left(y^2-4y+4\right)-6\)

\(B=2\left(x+\frac{y}{2}\right)^2+\frac{1}{2}\left(y-2\right)^2-6\ge-6\)

\(\Rightarrow B_{min}=-6\) khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Câu c đề sai, sao vừa có 2xy lại có cả 4xy

Bình luận (0)
DN
Xem chi tiết
DG
30 tháng 9 2018 lúc 8:41

a)  \(A=4x^2-12x+2010\)

\(=4x^2-12x+9+2001\)

\(=\left(2x-3\right)^2+2001\ge2001\)

Dấu "=" xảy ra khi:  \(x=\frac{3}{2}\)

Vậy....

Bình luận (0)