Những câu hỏi liên quan
HN
Xem chi tiết
NH
Xem chi tiết
NT
19 tháng 8 2023 lúc 9:29

a: \(\Leftrightarrow sin\left(\dfrac{x}{3}-\dfrac{pi}{4}\right)=sinx\)

=>x/3-pi/4=x+k2pi hoặc x/3-pi/4=pi-x+k2pi

=>2/3x=-pi/4+k2pi hoặc 4/3x=5/4pi+k2pi

=>x=-3/8pi+k3pi hoặc x=15/16pi+k*3/2pi

b: =>(sin3x-sin2x)(sin3x+sin2x)=0

=>sin3x-sin2x=0 hoặc sin 3x+sin 2x=0

=>sin 3x=sin 2x hoặc sin 3x=sin(-2x)

=>3x=2x+k2pi hoặc 3x=pi-2x+k2pi hoặc 3x=-2x+k2pi hoặc 3x=pi+2x+k2pi

=>x=k2pi hoặc x=pi/5+k2pi/5 hoặc x=k2pi/5 hoặc x=pi+k2pi

Bình luận (0)
H24
Xem chi tiết
NL
12 tháng 7 2021 lúc 22:02

a.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)

\(\Leftrightarrow1-sin^2x=0\)

\(\Leftrightarrow cos^2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

Bình luận (0)
NL
12 tháng 7 2021 lúc 22:04

b.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)

\(\Leftrightarrow16-12.sin^22x=7\)

\(\Leftrightarrow3-4sin^22x=0\)

\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Bình luận (0)
NL
12 tháng 7 2021 lúc 22:07

c.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow3-3sin^22x=4cos^22x\)

\(\Leftrightarrow3=3\left(sin^22x+cos^22x\right)+cos^22x\)

\(\Leftrightarrow3=3+cos^22x\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Bình luận (0)
MN
Xem chi tiết
NL
28 tháng 7 2021 lúc 14:38

1a.

Đặt \(5x+6=u\)

\(cos2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

Bình luận (0)
NL
28 tháng 7 2021 lúc 14:40

1b.

Đặt \(2x+1=u\)

\(cos2u+3sinu=2\)

\(\Leftrightarrow1-2sin^2u+3sinu=2\)

\(\Leftrightarrow2sin^2u-3sinu+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)
NL
28 tháng 7 2021 lúc 14:42

2a.

\(cos^2x-sin^2x+sin^2x+2cosx+1=0\)

\(\Leftrightarrow cos^2x+2cosx+1=0\)

\(\Leftrightarrow\left(cosx+1\right)^2=0\)

\(\Leftrightarrow cosx=-1\)

\(\Leftrightarrow x=\pi+k2\pi\)

Bình luận (0)
AL
Xem chi tiết
TT
Xem chi tiết
NL
7 tháng 10 2019 lúc 20:06

ĐKXĐ: ...

\(\Leftrightarrow\left(2sinx-1\right)cos^22x=4sin^2x-6sinx+2\)

\(\Leftrightarrow\left(2sinx-1\right)cos^22x=\left(2sinx-1\right)\left(2sinx-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\cos^22x=2\left(sinx-1\right)\end{matrix}\right.\)

Ở pt bên dưới ta có: \(\left\{{}\begin{matrix}cos^22x\ge0\\sinx-1\le0\end{matrix}\right.\)

Nên đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}cos2x=0\\sinx=1\end{matrix}\right.\) (vô nghiệm)

Bình luận (0)
BT
Xem chi tiết
LF
12 tháng 9 2016 lúc 17:10

a)\(pt\Leftrightarrow\frac{1-cos8x}{2}+\frac{1-cos6x}{2}=\frac{1-cos4x}{2}+\frac{1-cos2x}{2}\)

\(\Leftrightarrow cos2x+cos4x=cos6x+cos8x\)

\(\Leftrightarrow2cos3x\cdot cosx=2cos7x\cdot cosx\)

\(\Leftrightarrow2cos\left(cos3x-cos7x\right)=0\)

\(\Leftrightarrow2cosx\cdot\left(-2\right)\cdot sin5x\cdot sin\left(-2x\right)=0\)

\(\Leftrightarrow cosx\cdot sin2x\cdot sin5x=0\)

\(\Leftrightarrow sin2x\cdot sin5x=0\)(do sin2x=0 <=>2sinx*cosx=0 gồm th cosx=0 r`)

\(\Leftrightarrow\left[\begin{array}{nghiempt}sin2x=0\\sin5x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{k\pi}{2}\\x=\frac{k\pi}{5}\end{array}\right.\)\(\left(k\in Z\right)\)

Bình luận (3)
LF
12 tháng 9 2016 lúc 17:18

b)\(pt\Leftrightarrow1-cos2x+1-cos4x=1+cos6x+1+cos8x\)

\(\Leftrightarrow cos2x+cos8x+cos4x+cos6x=0\)

\(\Leftrightarrow cos10x\cdot cos6x+cos10x\cdot cos2x=0\)

\(\Leftrightarrow cos10x\left(cos6x+cos2x\right)=0\)

\(\Leftrightarrow cos10x\cdot cos8x\cdot cos4x=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cos10x=0\\cos8x=0\\cos4x=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{16}+\frac{k\pi}{8}\\x=\frac{\pi}{8}+\frac{k\pi}{4}\end{array}\right.\)

Bình luận (1)
BH
Xem chi tiết
NL
21 tháng 1 2021 lúc 0:05

Bạn xem lại đề bài

Bình luận (0)
DL
Xem chi tiết
NT
7 tháng 4 2016 lúc 16:41

\(\Leftrightarrow\frac{\cos^2x-4\sin^2x.\cos^2x}{4\cos^2x}=\frac{1}{2}\left(\cos\frac{\pi}{3}-\cos2x\right)\)

\(\Leftrightarrow1-4\sin^2x=2\left(\frac{1}{2}-\cos2x\right)\)

\(\Leftrightarrow1-4\sin^2x=1-2\cos2x\)

\(\Leftrightarrow2\sin^2x=\cos2x\)

\(\Leftrightarrow1-\cos2x=\cos2x\)

\(\Leftrightarrow\cos2x=\frac{1}{2}\Leftrightarrow x=\pm\frac{\pi}{6}+k\pi,k\in Z\) thỏa mãn điều kiện

 

Bình luận (0)