cho (a+b+c)2=3(ab+bc+ca). Chứng minh a=b=c
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a,b,c>=0, a+b+c=1. chứng minh rằng (a-bc)/(a+bc)+(b-ca)/(b+ca)+(c-ab)/(c+ab)<=3/2
\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{a^2+ab+bc+ca}=\frac{a-bc}{\left(a+b\right)\left(c+a\right)}\)
\(=\left(a-bc\right)\sqrt{\frac{1}{\left(a+b\right)^2\left(c+a\right)^2}}\le\frac{\frac{a-bc}{\left(a+b\right)^2}+\frac{a-bc}{\left(c+a\right)^2}}{2}=\frac{a-bc}{2\left(a+b\right)^2}+\frac{a-bc}{2\left(c+a\right)^2}\)
Tương tự, ta có: \(\frac{b-ca}{b+ca}\le\frac{b-ca}{2\left(b+c\right)^2}+\frac{b-ca}{2\left(a+b\right)^2}\)\(;\)\(\frac{c-ab}{c+ab}\le\frac{c-ab}{2\left(c+a\right)^2}+\frac{c-ab}{2\left(b+c\right)^2}\)
=> \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{a-bc+b-ca}{2\left(a+b\right)^2}+\frac{b-ca+c-ab}{2\left(b+c\right)^2}+\frac{a-bc+c-ab}{2\left(c+a\right)^2}\)
\(\frac{\left(a+b\right)\left(1-c\right)}{2\left(a+b\right)\left(1-c\right)}+\frac{\left(b+c\right)\left(1-a\right)}{2\left(b+c\right)\left(1-a\right)}+\frac{\left(c+a\right)\left(1-b\right)}{2\left(c+a\right)\left(1-b\right)}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Cho các số dương \(a,b,c\) thoả mãn \(a+b+c=3\). Chứng minh rằng: \(\dfrac{a^2+bc}{b+ca}+\dfrac{b^2+ca}{c+ab}+\dfrac{c^2+ab}{a+bc}\ge3\)
Cho a, b, c>0
Chứng minh rằng: (a+b+c)^2\(\ge\) 3(ab+bc+ca) và ((a+b+c)^2/ab+bc+ca)+(ab+bc+ca/(a+b+c)^2)\(\ge\) 10/3
Biến đổi tương đương:
\(\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\ge3\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b=c\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{ab+ac+bc}\ge3\)
b/ \(VT=\frac{\left(a+b+c\right)^2}{ab+ac+bc}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}=\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+\frac{ab+ac+bc}{\left(a+b+c\right)^2}\)
\(\Rightarrow VT\ge\frac{8\left(a+b+c\right)^2}{9\left(ab+ac+bc\right)}+2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+ac+bc\right)}{9\left(ab+ac+bc\right)\left(a+b+c\right)^2}}\ge\frac{8.3}{9}+\frac{2}{3}=\frac{10}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
cho a,b,c>0, chứng minh:
1)ab+bc+ca >= a√ab+b√ca+c√ab
2)a^2+b^2+c^2 >= a√ab+b√ca+c√ab
1, Áp dụng BĐT cosi cho a,b,c>0
\(ab+bc\ge2\sqrt{ab^2c}=2b\sqrt{ac}\\ bc+ca\ge2\sqrt{abc^2}=2c\sqrt{ab}\\ ca+ab\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)
Cộng VTV 3 BĐT trên:
\(\Leftrightarrow2\left(ab+bc+ac\right)\ge2\left(b\sqrt{ac}+a\sqrt{bc}+c\sqrt{ab}\right)\\ \Leftrightarrow ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)
\(2,\)
Ta có
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\\ \Leftrightarrow a^2+b^2+c^2-ab-ac-bc\ge0\\ \Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Áp dụng BĐT cm ở câu 1
Suy ra đpcm
Cho (a+b+c)2=3(ab+bc+ca).Chứng minh a=b=c
(a+b+c)2 3(ab+bc+ca) (*)
=>a2+b2+c2+2ab+2bc+2ca 3ab+3bc+3ca
=>a2+b2+c2 ab+bc+ca
nhân 2 vào cho 2 vế ta được:
2a2+2b2+2c2 2ab+2bc+2ca
=> (a+b)2+(b+c)2+(c+a)2 0 (đúng)
=> (*) đúng
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca) nha - HDT đặc biệt mở rộng
EZ QUÁ BRO:
Ta có: (a+b+c)2=a2+b2+c2+2ab+2bc+2ca
Mà (a+b+c)2=3(ab+bc+ca)
⇒a2+b2+c2+2ab+2bc+2ca=3(ab+bc+ca)
⇔a2+b2+c2+2ab+2bc+2ca=3ab+3bc+3ca
⇔a2+b2+c2=ab+bc+ca
⇔2(a2+b2+c2)=2(ab+bc+ca)
⇔2a2+2b2+2c2- 2ab-2bc-2ca=0
⇔(a2- 2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0
⇔(a-b)2+(b-c)2+(c-a)2=0
Vì (a-b)2≥0 với mọi a,b
(b-c)2≥0 với mọi b,c
(c-a)2≥0 với mọi c,a
⇒ (a-b)2+(b-c)2+(c-a)2 ≥ 0
Dấu "=" xảy ra khi
a-b=0 a=b
b-c=0 ⇔ b=c
c-a=0 c=a
⇔a=b=c (đpcm)
Cho a,b,c không âm. Chứng minh rằng :
a) a2 + b2 + c2 + 2abc + 2 > hoặc=ab +bc +ca +a+b+c
b)a2 + b2 +c2 +abc +4 > hoặc = 2(ab+bc+ca)
c) 3(a2 + b2 + c2) + abc +4 > hoặc =4 (ab+bc+ca)
d) 3(a2 + b2 + c2) + abc +80 > 4(ab+bc+ca) + 8(a+b+c)
Cho a,b,c thỏa mãn a+b+c=1.Chứng minh:
\(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}< =\frac{3}{2}\)3/2
Ta có \(\frac{a.1-bc}{a.1+bc}==\frac{a^2+ac}{a^2+ab+bc+ca}=\frac{a}{a+b}\)
Từ đó \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
\(=-\left(\frac{a}{c-1}+\frac{b}{a-1}+\frac{c}{b-1}\right)=-\left(\frac{a^2}{ca-a}+\frac{b^2}{ab-b}+\frac{c^2}{bc-c}\right)\)
\(\le-\frac{\left(a+b+c\right)^2}{ab+bc+ca-\left(a+b+c\right)}=-\frac{1}{ab+bc+ca-1}\le-\frac{1}{\frac{\left(a+b+c\right)^2}{3}-1}=\frac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}.\)
cho a,b,c là số thực dương chứng minh
\(\dfrac{2\left(a^4+b^4+c^4\right)}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}+\dfrac{ab+bc+ca}{a^3+b^3+c^3}\ge2\)
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(ab+bc+ca\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì
Cho 3 số thực a,b,c chứng minh rằng:
\(ab\left(b^2+bc+ca\right)+bc\left(c^2+ac+ab\right)+ca\left(a^2+ab+bc\right)\le\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)\)
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
SOS là ra, khá đơn giản. Ta có:
$$\text{VP}-\text{VT}=ab \left( -c+a \right) ^{2}+ca \left( b-c \right) ^{2}+cb \left( a-b
\right) ^{2}\geqq 0.$$
Đẳng thức xảy ra khi $a=b=c.$