Tìm hệ số a để:
a) (x4 +ax2+1) chia hết cho (x2+2x+1)
b) (x3-3x+a) chia hết cho (x-1)2
1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))
123456
xác định hệ số a,b để:
a) 4x3+ax+b chia hết cho x-2 và x+1
b) x4+ax+b chia hết cho x2-x+1
Cảm ơn nhiều ví đã giúp em ạ
\(a,4x^3+ax+b⋮x-2\\ \Leftrightarrow4x^3+ax+b=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow32+2a+b=0\Leftrightarrow2a+b=-32\left(1\right)\)
\(4x^3+ax+b⋮x+1\\ \Leftrightarrow4x^3+ax+b=\left(x+1\right)\cdot b\left(x\right)\)
Thay \(x=-1\Leftrightarrow-4-a+b=0\Leftrightarrow a-b=-4\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có hệ \(\left\{{}\begin{matrix}2a+b=-32\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-36\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)
b)Tìm a và b để x3 + ax2 + 2x + b chia hết cho x2 + x + 1
1) a) | x+2 | +2 = -x
b) b) 2+(-4)+6+(-8) + ... + = - 200
c) | 6-2x | + | x-3 | = 0
2) Cho a là 1 số tự nhiên. Chứng tỏ: ( a-1 ) * ( a+2 ) + 12 không chia hết cho 9
3) Tìm các số tự nhiên n sao cho : 2^m - 2^n = 256
4) Cho n số x1;x2;x3;...;xn, mỗi số =1 hoặc -1. biết tổng của n tích, x1*x2 , x2*x3 , x3*x4 , ... , xn*x1=0. CMR n chia hết cho 4
mình cũng lớp 6 nhưng đẻ chút nữa xem mình có làm đc ko
a) Tìm a để đa thức x3+x2-x+a chia hết cho đa thức x+2
b) Tìm a và b để đa thức x3+ax2+2x+b chia hết cho đa thức x2+x+1
c) Tìm a và b để đa thức x3+4x2+ax+b chia hết cho đa thức x2+x+1
em mong mọi người giúp đỡ em cảm ơn ạ
Bài 1 : Tìm a để (5x3 - 3x2 + 2x +a) chia hết cho ( x +1)
Bài 2 : Tìm a để phép chia sau là phép chia hết :
a) ( x3 - x2 + 2x + a) chia hết cho x -1
b) x3 -2x2 -2x + a chia hết cho x +1
Bài 3 Tìm các giá trị a , b ,k để đa thức f(x) chia hết cho đa thức g(x)
a) f(x)= x4 -9x3 + 21x2 + x +k ; g (x) = x2 - x -2
b) f(x) = x4 - 3x3 + 3x2 + ax + b ; g(x) = x2 - 3x +4
Bài 1:
Ta có: \(5x^3-3x^2+2x+a⋮x+1\)
\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)
\(\Leftrightarrow a-10=0\)
hay a=10
Để đa thức x 4 + a x 2 + 1 chia hết cho x 2 + 2x + 1 thì giá trị của a là
A. a = -2
B. a = 1
C. a = -1
D. a = 0
Phần dư của phép chia đa thức x 4 + a x 2 + 1 chia hết cho x 2 + 2x + 1 là
R = (-4 – 2a)x – a – 2
Để phép chia trên là phép chia hết thì R = 0 ó (-4 – 2a)x – a – 2 = 0 với mọi x
ó - 2 a - 4 = 0 - a - 2 = 0 ó a = -2
Đáp án cần chọn là: A
Xác định số hữu tỉ a, b sao cho:
a) 2x2 + ax - 4 chia hết cho x + 4
b) x4 - 3x3 + 3x2 + ax + b chia hết cho x2 - 3x - 4
c) 3x2 + ax + 27 chia cho x + 5 thì dư 27
d) x3 + ax + b chia cho x + 1 thi dư 7, chia cho x - 3 thì dư 5.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
ìm a để đa thức A(x)=x3+ax2-x-a chia hết cho đa thức B(x)=x2-1
Lời giải:
$A(x)=(x^3-x)+(ax^2-a)=x(x^2-1)+a(x^2-1)=(x+a)(x^2-1)$
$=(x+a)B(x)$
Do đó $A(x)$ luôn chia hết cho $B(x)$ với mọi $a$