Những câu hỏi liên quan
CA
Xem chi tiết
HH
11 tháng 12 2020 lúc 19:02

Thấy cosx= 0 là nghiệm của phương trình => \(x=\dfrac{\pi}{2}+k\pi\)

Xét cosx khác 0, chia cả 2 vế cho cos^2 x

\(\Leftrightarrow\tan^2x-\sqrt{3}\tan x+2=1+\tan^2x\)

\(\Leftrightarrow\tan x=\dfrac{\sqrt{3}}{3}\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

Bình luận (0)
BB
Xem chi tiết
AN
Xem chi tiết
KB
9 tháng 4 2022 lúc 7:31

P/t \(\Leftrightarrow2cos2x.sin2x-sin2x+2cos^22x-cos2x-1=0\)

\(\Leftrightarrow sin4x-sin2x+cos4x-cos2x=0\)

\(\Leftrightarrow2sinx.cos3x-2sin3x.sinx=0\)

\(\Leftrightarrow sinx\left(cos3x-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(1\right)\\cos3x=sin3x\left(2\right)\end{matrix}\right.\) 

(1) \(\Leftrightarrow x=k\pi\left(k\in Z\right)\)

(2) \(\Leftrightarrow sin3x-cos3x=0\)  \(\Leftrightarrow\sqrt{2}sin\left(3x-\dfrac{\pi}{4}\right)=0\)

\(\Leftrightarrow3x-\dfrac{\pi}{4}=k\pi\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\left(k\in Z\right)\)

Vậy ... 

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 12 2019 lúc 4:12

2 cos 2 x   -   3 sin 2 x   +   sin 2 x   =   1

- cosx = 0 thỏa mãn phương trình ⇒ phương trình có nghiệm x = π/2+kπ,k ∈ Z.

- Với cosx ≠ 0, chia hai vế cho cos 2   x , tìm được tanx = 1/6.

Vậy phương trình có các nghiệm x = π/2+kπ,k ∈ Z và x = arctan1/6 + kπ,k ∈ Z.

Bình luận (0)
BB
Xem chi tiết
NT
15 tháng 8 2023 lúc 15:04

=>\(2\cdot cos2x\cdot sin2x+2cos^22x-sin2x-cos2x-1=0\)

=>\(2cos2x\cdot sin2x+2\cdot cos^22x-1=sin2x+cos2x\)

=>\(sin4x+cos4x=sin2x+cos2x\)

=>\(sin\left(4x+\dfrac{pi}{4}\right)=sin\left(2x+\dfrac{pi}{4}\right)\)

=>4x+pi/4=2x+pi/4+k2pi hoặc 4x+pi/4=pi-2x-pi/4+k2pi

=>2x=k2pi hoặc 6x=1/2pi+k2pi

=>x=kpi hoặc x=1/12pi+kpi/3

Bình luận (0)
MA
Xem chi tiết
HP
17 tháng 8 2021 lúc 11:55

\(\left(2cos2x-1\right)\left(sin2x+cos2x\right)=1\)

\(\Leftrightarrow2sin2x.cos2x+2cos^22x-sin2x-cos2x-1=0\)

\(\Leftrightarrow sin4x+cos4x-sin2x-cos2x=0\)

\(\Leftrightarrow2cos3x.sinx-2sin3x.sinx=0\)

\(\Leftrightarrow2sinx\left(cos3x-sin3x\right)=0\)

\(\Leftrightarrow2\sqrt{2}sinx.cos\left(3x+\dfrac{\pi}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos\left(3x+\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\3x+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 10 2019 lúc 16:26

1   +   sin x   -   cos x   -   sin 2 x   +   2 cos 2 x   =   0   ( 1 )     T a   c ó :     1   -   sin 2 x   =   sin x   -   cos x 2     ⇔   2 cos 2 x   =   2 ( cos 2 x   -   sin 2 x )   =   - 2 ( sin x   -   cos x ) ( sin x   +   cos x )     V ậ y   ( 1 )   ⇔   ( sin x   -   cos x ) ( 1   +   sin x   -   cos x   -   2 sin x   -   2 cos x )   =   0     ⇔   ( sin x   -   cos x ) ( 1   -   sin x   -   3 cos x )   =   0

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Bình luận (0)
TV
Xem chi tiết
H24
Xem chi tiết
HP
1 tháng 6 2021 lúc 0:28

1.

\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)

\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)

\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)

Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)

\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)

Bình luận (0)
HP
1 tháng 6 2021 lúc 8:33

2.

\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)

\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)

\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Bình luận (0)