Giải phương trình:
\(\left(2Cos2x-1\right)\left(Sin2x+Cos2x\right)=1\)
2cos2x-sin2x-sin2x=m+1 tìm m để phương trình có nghiệm \(\dfrac{\pi}{2}\)+kπ
Tính tổng các nghiệm trên (0;\(\pi\)) của phương trình:
\(\dfrac{1}{Cosx}+\dfrac{1}{Sin2x}=\dfrac{1}{Sin4x}\)
Giải PT:
sin4x + 2cos2x + 4.(sinx + cosx) = 1 + cos4x
Giải 1+2cos2x=sin2x
giải các pt
a) \(tanx-\frac{\sqrt{2}}{cosx}=1\)
b) \(\frac{2sinx-1}{cos4x}+\frac{2sinx-1}{sin4x-1}=0\)
c) \(sin\left(x+\frac{\pi}{4}\right)-cos\left(x-\frac{\pi}{4}\right)=1\)
d) \(\frac{sin2x-2cos2x-5}{2sin2x-cos2x-6}=0\)
Giải phương trình: \(\frac{1-2\sqrt{2}\left(\sin2x+\cos2x\right)}{\sin4x}=6\tan^2\left(x-\frac{\pi}{8}\right)\)
giải pt: \(2cos2x+sin2x=0\)
Giải phương trình sau:
1) \(\frac{1}{cosx}+\frac{1}{sin2x}=\frac{2}{sin4x}\)
2) \(\frac{sin^4x+cos^4x}{5sin2x}=\frac{1}{2}cot2x-\frac{1}{8sin2x}\)