Những câu hỏi liên quan
LL
Xem chi tiết
NT
6 tháng 7 2021 lúc 20:43

a) Ta có: \(\sqrt{\left(x+1\right)^2}=3\)

\(\Leftrightarrow\left|x+1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

b) Ta có: \(3\sqrt{4x+4}-\sqrt{9x-9}-8\sqrt{\dfrac{x+1}{16}}=5\)

\(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x-3}-2\sqrt{x+1}=5\)

\(\Leftrightarrow4\sqrt{x+1}=5+3\sqrt{x-3}\)

\(\Leftrightarrow16\left(x+1\right)=25+30\sqrt{x-3}+9\left(x-3\right)\)

\(\Leftrightarrow16x+16=25+9x-27+30\sqrt{x-3}\)

\(\Leftrightarrow30\sqrt{x-3}=16x+16+2-9x\)

\(\Leftrightarrow30\sqrt{x-3}=7x+18\)

\(\Leftrightarrow x-3=\left(\dfrac{7x+18}{30}\right)^2\)

\(\Leftrightarrow x-3=\dfrac{49x^2}{900}+\dfrac{7}{25}x+\dfrac{9}{25}\)

\(\Leftrightarrow\dfrac{49}{900}x^2-\dfrac{18}{25}x+\dfrac{84}{25}=0\)

\(\Delta=\left(-\dfrac{18}{25}\right)^2-4\cdot\dfrac{49}{900}\cdot\dfrac{84}{25}=-\dfrac{16}{75}< 0\)

Vậy: Phương trình vô nghiệm

Bình luận (0)
LH
6 tháng 7 2021 lúc 20:43

a)Pt\(\Leftrightarrow\left|x+1\right|=3\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

b)Đk:\(x\ge-1\)

Sửa đề: \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)

Pt \(\Leftrightarrow6\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=5\)

\(\Leftrightarrow x=24\left(tm\right)\)

Bình luận (0)
PG
6 tháng 7 2021 lúc 20:49

a.  \(\sqrt{\left(x+1\right)^2}\)  \(=3\)

⇔   \(\left|x+1\right|=3\)

⇔    \(\left|x\right|=2\)

⇒     \(x=2\) và  \(x=-2\)

Bình luận (1)
AL
Xem chi tiết
NT
18 tháng 10 2021 lúc 21:55

a: Ta có: \(\sqrt{4-3x}=8\)

\(\Leftrightarrow4-3x=64\)

\(\Leftrightarrow3x=-60\)

hay x=-20

b: ta có: \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)

\(\Leftrightarrow2\sqrt{x-2}-12\cdot\dfrac{\sqrt{x-2}}{3}=-1\)

\(\Leftrightarrow x-2=\dfrac{1}{4}\)

hay \(x=\dfrac{9}{4}\)

Bình luận (0)
H24
18 tháng 10 2021 lúc 21:56

\(\left\{{}\begin{matrix}8>0\left(luondung\right)\\4-3x=64\end{matrix}\right.\) \(\Leftrightarrow x=-20\left(ktm\right)\)

Bình luận (0)
TK
Xem chi tiết
NL
26 tháng 12 2020 lúc 20:12

a. ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}+\sqrt{1-x}=t>0\)

\(\Rightarrow t^2=2+2\sqrt{1-t^2}\)

Pt trở thành:

\(t.t^2=8\Leftrightarrow t^3=8\Leftrightarrow t=2\)

\(\Rightarrow\sqrt{1+x}+\sqrt{1-x}=2\)

\(\Leftrightarrow2+2\sqrt{1-x^2}=2\)

\(\Leftrightarrow1-x^2=0\Rightarrow x=\pm1\)

b.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\)

Pt trở thành:

\(t=t^2-4-16\Leftrightarrow...\)

Bình luận (0)
LL
Xem chi tiết
NT
30 tháng 9 2021 lúc 22:25

Bài 1: 

a: Ta có: \(x^2-2\sqrt{5}x+5=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: Ta có: \(\sqrt{x+3}=1\)

\(\Leftrightarrow x+3=1\)

hay x=-2

Bình luận (0)
LL
Xem chi tiết
NL
4 tháng 7 2021 lúc 16:03

a, \(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy ...

b, ĐKXĐ : \(x\ge-1\)

\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=-\dfrac{5}{3}\)

Vậy phương trình vô nghiệm

Bình luận (0)
LH
4 tháng 7 2021 lúc 16:04

a)Pt \(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy...

b)Đk:\(x\ge-1\)

Pt\(\Leftrightarrow2\sqrt{x+1}-3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow-3\sqrt{x+1}=5\) (vô nghiệm)

Vậy...

Bình luận (0)
TK
4 tháng 7 2021 lúc 16:04

a\(\sqrt{\left(2x-1\right)^2}=4\)

\(\Leftrightarrow\left|2x-1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy S={\(\dfrac{5}{2};-\dfrac{3}{2}\)}

Bình luận (0)
H24
Xem chi tiết
TQ
11 tháng 6 2021 lúc 9:43

a) \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)   (x≥0) Đặt \(\sqrt{2x}\) = a ( a>0 )

Khi đó pt :

<=> 7+a =3 + \(\sqrt{5}\)

<=> 4+a = \(\sqrt{5}\)

<=> (4+a)\(^2\) = 5

<=> 16 + 8a + a\(^2\) = 5

<=>a\(^2\) + 8a+ 11 = 0

<=> a = -4 + \(\sqrt{5}\) (Loại) và a = -4-\(\sqrt{5}\)(Loại) 

Vậy Pt vô nghiệm.

b) \(\sqrt{3x^2-4x}\) = 2x-3

<=> 3x\(^2\)- 4x = 4x\(^2\)-12x + 9 

<=> x\(^2\)-8x+9 = 0

<=> x=1 , x=9 

Vậy S={1;9} 

c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}\) = 2

<=> \(\dfrac{\left(\sqrt{7-x}\right)^3+\left(\sqrt{x-5}\right)^3}{\sqrt{7-x}+\sqrt{x-5}}=2\)

<=> \(\dfrac{\left(\sqrt{7-x}+\sqrt{x-5}\right)\left(7-x-\sqrt{\left(7-x\right)\left(x-5\right)}+x-5\right)}{\sqrt{7-x}+\sqrt{x-5}}=2\)

<=> \(\sqrt{\left(7-x\right)\left(x-5\right)}=0\)

<=> x=7,x=5

Vậy x=5 hoặc x=7

 

Bình luận (0)
3P
Xem chi tiết
NT
11 tháng 12 2023 lúc 23:04

a: \(x^2\cdot2\sqrt{3}+x+1=\sqrt{3}\cdot\left(x+1\right)\)

=>\(x^2\cdot2\sqrt{3}+x\left(1-\sqrt{3}\right)+1-\sqrt{3}=0\)

\(\text{Δ}=\left(1-\sqrt{3}\right)^2-4\cdot2\sqrt{3}\left(1-\sqrt{3}\right)\)

\(=4-2\sqrt{3}-8\sqrt{3}\left(1-\sqrt{3}\right)\)

\(=4-2\sqrt{3}-8\sqrt{3}+24=28-10\sqrt{3}=\left(5-\sqrt{3}\right)^2>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x_1=\dfrac{-\left(1-\sqrt{3}\right)-\left(5-\sqrt{3}\right)}{2\cdot2\sqrt{3}}=\dfrac{-1+\sqrt{3}-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\\x_2=\dfrac{-\left(1-\sqrt{3}\right)+5-\sqrt{3}}{2\cdot2\sqrt{3}}=\dfrac{4}{4\sqrt{3}}=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)

b: \(5x^2-3x+1=2x+31\)

=>\(5x^2-3x+1-2x-31=0\)

=>\(5x^2-5x-30=0\)

=>\(x^2-x-6=0\)

=>(x-3)(x+2)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

c: \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right)\)

=>\(x^2+2\sqrt{2}x+4-3x-3\sqrt{2}=0\)

=>\(x^2+x\left(2\sqrt{2}-3\right)+4-3\sqrt{2}=0\)

\(\text{Δ}=\left(2\sqrt{2}-3\right)^2-4\left(4-3\sqrt{2}\right)\)

\(=17-12\sqrt{2}-16+12\sqrt{2}=1\)>0

Do đó, phương trình có hai nghiệm phân biệt là:

\(\left[{}\begin{matrix}x_1=\dfrac{-\left(2\sqrt{2}-3\right)-1}{2}=\dfrac{-2\sqrt{2}+3-1}{2}=-\sqrt{2}+1\\x_2=\dfrac{-\left(2\sqrt{2}-3\right)+1}{2}=\dfrac{-2\sqrt{2}+4}{2}=-\sqrt{2}+2\end{matrix}\right.\)

Bình luận (1)
LL
Xem chi tiết
LL
Xem chi tiết
AT
4 tháng 7 2021 lúc 16:45

a) \(\sqrt{\left(x-3\right)^2}=2\Rightarrow\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

b) \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Rightarrow\sqrt{9\left(x+2\right)}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25\left(x+2\right)}=6\)

\(\Rightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Rightarrow2\sqrt{x+2}=6\Rightarrow\sqrt{x+2}=3\Rightarrow x+2=9\Rightarrow x=7\)

\(Q=\dfrac{1}{x-2\sqrt{x}+3}\)

Ta có: \(x-2\sqrt{x}+3=x-2\sqrt{x}+1+2=\left(\sqrt{x}-1\right)^2+2\ge2\)

\(\Rightarrow\dfrac{1}{x-2\sqrt{x}+3}\le2\Rightarrow Q_{max}=2\) khi \(x=1\)

Bình luận (0)
TN
Xem chi tiết
LH
4 tháng 7 2021 lúc 16:11

a)Pt \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\dfrac{1}{3}+\dfrac{1}{2}\)

\(\Leftrightarrow\left|2x-1\right|=\dfrac{5}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{5}{6}\\2x-1=-\dfrac{5}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=\dfrac{1}{12}\end{matrix}\right.\)

Vậy...

b)Đk:\(x\ge3\)

Pt \(\Leftrightarrow\sqrt{x-3}\left(x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\x-4=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=4\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)

Vậy...

c)Đk:\(x\ge1\)

\(x+\sqrt{x-1}=13\)

\(\Leftrightarrow\sqrt{x-1}=13-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}13-x\ge0\\x-1=x^2-26x+169\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-27x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\x^2-17x-10x+170=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left(x-17\right)\left(x-10\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}13\ge x\\\left[{}\begin{matrix}x=17\\x=10\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=10\) (tm)

Vậy...

Bình luận (0)