chứng minh rằng : (14√14+√12+√30√2+√5).√5−√21=4
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
* Chứng minh đẳng thức:
\(\left(\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}=4\)
\(VT=\left(\dfrac{\sqrt{14.14}}{\sqrt{14}}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
\(=\sqrt{30-6\sqrt{21}}+\sqrt{70-14\sqrt{21}}\)
\(=\sqrt{21-2.3\sqrt{21}+9}+\sqrt{21-2.7.\sqrt{21}+49}\)
\(=\sqrt{\left(\sqrt{21}-3\right)^2}+\sqrt{\left(7-\sqrt{21}\right)^2}\)
\(=\sqrt{21}-3+7-\sqrt{21}=4\)
(14/√14 + √12+√30 / √2+√5 ) . √5-√21 = 4
Ta có: \(\left(\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}\right)\cdot\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\cdot\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
=7-3
=4
(\(\dfrac{14}{\sqrt{14}}\)+\(\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}\))x\(\sqrt{5-\sqrt{21}}\)=4
\(VT=\left(\dfrac{\sqrt{14}.\sqrt{14}}{\sqrt{14}}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right)\sqrt{5-\sqrt{21}}\\ =\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\\ =\sqrt{14}.\sqrt{5-\sqrt{2}1}+\sqrt{6}.\sqrt{5-\sqrt{21}}\\ =\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\\ =\sqrt{49-2.7.\sqrt{21}+21}+\sqrt{9-2.3.\sqrt{21}+21}\\ =\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(3-\sqrt{21}\right)^2}\\ =\left|7-\sqrt{21}\right|+\left|3-\sqrt{21}\right|\\ =7-\sqrt{21}+\sqrt{21}-3\\ =7-3=4=VP\)
\(VT=\left(\sqrt{14}+\sqrt{6}\right)\cdot\sqrt{5-\sqrt{21}}\)
\(=\left(\sqrt{7}+\sqrt{3}\right)\cdot\sqrt{10-2\sqrt{21}}\)
=(căn 7+căn 3)(căn 7-căn 3)
=7-3
=4=VP
chứng minh rằng các phân số sau là phân số tối giản với mọi n nguyên
a] 12.n+1/30.n+2 b] 8.n+5/6N+4 c] 21.n+4/14.n+3 d]3.n-2/4.n-3
Cho A = 5 + 52 + 5 3 +... + 5 14 . Chứng minh rằng: A chia hết 30
fffffffffffffffffffffffffffffffffff
Ta có\(A=5+5^2+5^3+...+5^{14}\)
\(A=5\left(1+5+5^2+...+5^{13}\right)\)và hiển nhiên \(A⋮5\)(1)
Mặt khác \(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{13}+5^{14}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{13}\left(1+5\right)\)
\(A=\left(1+5\right)\left(5+5^3+...+5^{13}\right)\)
\(A=6\left(5+5^3+...+5^{13}\right)\)và hiển nhiên \(A⋮6\)(2)
Mà ƯCLN(5,6) = 1 (3)
Từ (1), (2) và (3) \(\Rightarrow A⋮5.6=30\)Vậy \(A⋮30\)
A= 5 + 52 + 53 + ... + 514
A= ( 5+52) + ( 53+ 54)+ ...+ (513+514)
A= 1. ( 5+52) + 52.( 5+52)+...+ 512.(5+52)
A= 1.30+52.30+...+ 512.30
A= 30.(1+52+...+512)
Vì 30 chia hết cho 30 => A chia hết cho 30
Vậy A chia hết cho 30
_HT_
Bài 1.:chứng minh rằng:
a/ (7^0+7^1+7^2+7^3+7^4+...+7^2011) chia hết cho 8
b/(5^11+5^12+5^13+5^14+...+5^200) chia hết cho 30
Bài 2 tìm các STN x,y trong mỗi trường hợp sau đây
a/ x.y=11
B/ (2x+1).(3y-2)=12
hãy tính nhanh:
A.1+2+3+4+5+6+7+8+9+10+11+12+13-14=?
B.30-29+28-27+26-25+24-23+22-21...+12-11+10-9+8-7+6-5+4-3+2-1=?
a) \(\dfrac{-21}{15}\).\(\dfrac{-10}{14}\) b)\(\left(-\dfrac{2}{3}\right)^2\) c)\(\dfrac{-3}{4}\).\(\dfrac{-4}{5}\).\(\dfrac{16}{9}\) d)\(\dfrac{-8}{3}\).\(\dfrac{5}{6}\) e)\(\dfrac{16}{30}\).\(\dfrac{5}{12}\) f) \(\dfrac{13}{30}\).\(\dfrac{-1}{5}\) g)\(\dfrac{2}{21}\).\(\dfrac{3}{28}\) h)\(\left(\dfrac{-3}{4}\right)^3\)
`a, -21/15 . (-10)/14 = 210/210=1`
`b, (-2/3)^2= 4/9`
`c, (-3)/4 . (-4)/5 . 16/9= 192/180=16/15`
`d, (-8)/3 . 5/6= -40/18=-20/9`
`e, 16/30 . 5/12= 8/15 . 5/12=40/180=2/9`
`f, 13/30 . (-1)/5= -13/150`
`g, 2/21 . 3/28= 6/588= 1/98`
`h, (-3/4)^3= -27/64`
Rút gọn
a)\(\sqrt{20}-15\sqrt{\dfrac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
b)\(\left(\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}\)
lm giúp mik vs ạ
a) \(=2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1=-1\)
b) \(=\left[\sqrt{14}+\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{5}}\right].\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)^2}\)
\(=\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{3}{2}}\right)\)
\(=\sqrt{49}-\sqrt{21}+\sqrt{21}-\sqrt{9}\)
\(=7-3=4\)
a) \(\sqrt{20}-15\sqrt{\dfrac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}=2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1=-1\)
b) \(\left(\dfrac{14}{\sqrt{14}}+\dfrac{\sqrt{12}+\sqrt{30}}{\sqrt{2}+\sqrt{5}}\right).\sqrt{5-\sqrt{21}}=\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}=\left(\sqrt{7}+\sqrt{3}\right)\sqrt{10-2\sqrt{21}}=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)=4\)