Những câu hỏi liên quan
NN
Xem chi tiết
NN
17 tháng 5 2016 lúc 11:23

Xét hàm số : \(f_n\left(x\right)=e^x-1-x-\frac{x^2}{2}-.......-\frac{x^n}{n!}\)

Ta sẽ chứng minh \(f_n\left(x\right)\ge0\)  (*) với mọi \(x\ge;n\in N\)

* Với \(n=1:f_1\left(x\right)=e^x-1-x\Rightarrow f_1'\left(x\right)=e^x-1\ge0\) và \(f'\left(x\right)=0\) khi x = 0

\(\Rightarrow\) Hàm số \(f_1\left(x\right)\) đồng biến với \(x\ge0\Rightarrow f_1\left(x\right)\ge f_1\left(0\right)=0\)

Vậy (*) đúng với n = 1

* Giả sử (*) đúng với n = k hay \(f_k\left(x\right)\ge0\), ta cần chứng minh (*) đúng với \(n=k+1\) hay \(f_{k+1}9x=e^x-1-x-\frac{x^2}{2}-...-\frac{x^k}{k!}-\frac{x^{k+1}}{\left(k+1\right)!}\ge0\)

Thật vậy :

\(f_{k+1}'\left(x\right)=e^x-1-x-\frac{x^k}{k!}=f_k\left(x\right)\ge0\) (theo giả thiết quy nạp và \(f'_{k+1}\left(0\right)\ge f_{k+1}\left(0\right)=0\)khi \(x=0\)

\(\Rightarrow\) hàm số \(f_{k+1}\left(x\right)\) đồng biến với mọi \(x\ge0\Rightarrow f_{k+1}\left(x\right)\ge f_{k+1}\left(0\right)=0\) Vậy (*) đúng với n = k+1

Theo phương pháp quy nạp \(\Rightarrow e^x\ge1+x+\frac{x^2}{2}+..+\frac{x^n}{n!}\) với mọi \(x\ge0;n\in N\)

Bình luận (0)
HH
Xem chi tiết
AH
29 tháng 5 2021 lúc 23:01

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

Bình luận (0)
AH
29 tháng 5 2021 lúc 23:04

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

Bình luận (0)
LL
Xem chi tiết
NN
17 tháng 5 2016 lúc 10:55

 

\(e^x\ge x+1\) với mọi \(x\in R\) \(\Leftrightarrow e^x-x-1\ge0\) với mọi \(x\in R\)

Xét hàm số \(f\left(x\right)=e^x-x-1\) với mọi \(x\in R\)

Ta có : \(f'\left(x\right)=e^x-1=0\Leftrightarrow x=0\)

và : \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(e^x-x-1\right)=+\infty\)

        \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(e^x-x-1\right)=+\infty\)

Xét bảng biến thiên :

x f'(x) f(x) 8 8 8 8 - + + + 0 0 0 - +

Từ bảng biến thiên ta có : \(f\left(x\right)\ge0\) với mọi \(x\in R\)

                              hay : \(e^x-x-1\ge0\) với mọi  \(x\in R\)

=> Điều phải chứng minh  

 

Bình luận (0)
DD
Xem chi tiết
AH
23 tháng 9 2020 lúc 12:12

Lời giải:

$x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}$

$=(x+\frac{1}{2})^2+\frac{3}{4}$

$\geq 0+\frac{3}{4}$

$> 0$

Ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
LS
Xem chi tiết
H24
3 tháng 2 2022 lúc 15:26

Dễ thấy:

     \(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)

Áp dụng Cô-si:

     \(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)

Do đó:

     \(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)

 

Bình luận (0)
NT
Xem chi tiết
HA
30 tháng 4 2020 lúc 8:07

https://hoc247.net/hoi-dap/toan-8/chung-minh-a-x-10-x-9-x-4-x-1-0-faq392123.html

Bình luận (0)
DD
Xem chi tiết
NT
23 tháng 9 2020 lúc 17:51

Ta có: \(2x^2+2x+1\)

\(=2\left(x^2+x+\frac{1}{2}\right)\)

\(=2\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)

hay \(2x^2+2x+1>0\forall x\)(đpcm)

Bình luận (0)
DD
Xem chi tiết
AH
23 tháng 9 2020 lúc 10:30

Lời giải:

Ta thấy:

$9x^2-6x+2=(9x^2-6x+1)+1$

$=[(3x)^2-2.3x+1^2]+1=(3x-1)^2+1$

Vì $(3x-1)^2\geq 0$ với mọi $x$

$\Rightarrow 9x^2-6x+2=(3x-1)^2+1\geq 1>0$ với mọi $x$

Ta có đpcm.

Bình luận (0)
DD
Xem chi tiết