Những câu hỏi liên quan
NT
Xem chi tiết
DT
29 tháng 9 2016 lúc 10:43

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

Bình luận (0)
CB
Xem chi tiết
DH
11 tháng 8 2021 lúc 9:49

\(y=x^4-2\left(m^2-m+1\right)x+m-1\)

\(y'=4x^3-4\left(m^2-m+1\right)x\)

\(y'=0\Leftrightarrow4x^3-4\left(m^2-m+1\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{m^2-m+1}\end{cases}}\)

Khoảng cách giữa hai điểm cực tiểu là: 

\(2\sqrt{m^2-m+1}=2\sqrt{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge2\sqrt{\frac{3}{4}}\)

Dấu \(=\)khi \(m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{2}\).

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
23 tháng 5 2019 lúc 7:08

Đáp án A

Bình luận (0)
NC
Xem chi tiết
ML
Xem chi tiết
NN
27 tháng 3 2016 lúc 9:02

Do \(f'\left(x\right)=x^2-2mx-1=0\)

Có \(\Delta'=m^2+1>0\) nên\(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số đạt cực trị tại  \(x_1,x_2\)  với các điểm \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)

Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :

\(f\left(x\right)=\frac{1}{3}\left(x-m\right)f'\left(x\right)-\frac{2}{3}\left(m^1+1\right)x+\left(\frac{2}{3}m+1\right)\)

Do \(f'\left(x_1\right)=f\left(x_2\right)=0\) nên

\(y_1=f\left(x_1\right)=-\frac{2}{3}\left(m^1+1\right)x_1+\left(\frac{2}{3}m+1\right)\)

\(y_2=f\left(x_2\right)=-\frac{2}{3}\left(m^2+1\right)x_2+\left(\frac{2}{3}m+1\right)\)

Ta có \(AB^2=\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2=\left(x_2-x_1\right)^2+\frac{4}{9}\left(m^2+1\right)^2\left(x_2-x_1\right)^2\)

                  \(=\left[\left(x_2-x_1\right)^2-4x_2x_1\right]\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\)

                  \(=\left(4m^2+4\right)\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\ge4\left(1+\frac{4}{9}\right)\)

\(\Rightarrow AB\ge\frac{2\sqrt{13}}{3}\)

Vậy Min \(AB=\frac{2\sqrt{13}}{3}\) xảy ra <=> m=0

Bình luận (0)
LD
Xem chi tiết
NH
23 tháng 4 2016 lúc 14:42

Hàm số xác định trên R

Ta có \(y'=x^2-2mx+2m-1\Rightarrow y'=0\Leftrightarrow x^2-2mx+2m-1=0\left(2\right)\)

Hàm số có 2 điểm cực trị dương \(\Leftrightarrow\left(2\right)\) có 2 nghiệm dương phân biệt :

\(\Leftrightarrow\begin{cases}\Delta'=m^2-2m+1>0\\S=2m>0\\P=2m-1>0\end{cases}\) \(\Leftrightarrow\begin{cases}m>\frac{1}{2}\\m\ne1\end{cases}\)

Vậy \(\begin{cases}m>\frac{1}{2}\\m\ne1\end{cases}\) là giá trị cần tìm

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 11 2018 lúc 3:28

Phương trình đường thẳng đi qua 2 điểm cực trị là 

Bình luận (0)
AN
Xem chi tiết
NL
30 tháng 6 2021 lúc 18:16

Đề đúng là \(y=mx^2+2\left(m^2-5\right)x^4+4\) chứ bạn (nghĩa là ko bị nhầm lẫn vị trí \(x^2\) và \(x^4\))

Hàm có đúng 2 điểm cực đại và 1 điểm cực tiểu khi:

\(\left\{{}\begin{matrix}2\left(m^2-5\right)< 0\\2\left(m^2-5\right).m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \sqrt{5}\)

\(\Rightarrow\) có 2 giá trị nguyên của m thỏa mãn

Bình luận (0)
MT
Xem chi tiết