Những câu hỏi liên quan
PB
Xem chi tiết
CT
22 tháng 2 2018 lúc 12:02

Bình luận (0)
TC
Xem chi tiết
HP
4 tháng 4 2021 lúc 22:16

ĐK: \(x\in R\)

\(pt\Leftrightarrow\sqrt{x^2+12}-4+3-\sqrt{x^2+5}+6-3x=0\)

\(\Leftrightarrow\dfrac{x^2-4}{\sqrt{x^2+12}+4}+\dfrac{4-x^2}{3+\sqrt{x^2+5}}+6-3x=0\)

\(\Leftrightarrow\left(\dfrac{x+2}{\sqrt{x^2+12}+4}-\dfrac{x+2}{3+\sqrt{x^2+5}}-3\right)\left(x-2\right)=0\left(1\right)\)

Từ phương trình suy ra \(3x-5=\sqrt{x^2+12}-\sqrt{x^2+5}>0\Rightarrow x>\dfrac{5}{3}\)

Ta có: \(\dfrac{x+2}{\sqrt{x^2+12}+4}-\dfrac{x+2}{3+\sqrt{x^2+5}}-3\)

\(=\left(\dfrac{1}{\sqrt{x^2+12}+4}-\dfrac{1}{3+\sqrt{x^2+5}}\right)\left(x+2\right)-3< 0\)

Khi đó \(\left(1\right)\Leftrightarrow x=2\left(tm\right)\)

Vậy phương trình đã cho có nghiệm \(x=2\)

Bình luận (0)
BT
Xem chi tiết
LA
16 tháng 2 2016 lúc 12:33

haha

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 10 2017 lúc 9:49

Đặt m =  x 2  +3x -1

Ta có:  x 2 + 3 x - 1 2  +2( x 2  +3x -1) -8 =0 ⇔  m 2  +2m -8 =0

∆ ’ = 1 2  -1.(-8) =1 +8 =9 > 0

∆ ' = 9  =3

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Với m = 2 thì :  x 2 +3x - 1 = 2 ⇔  x 2  + 3x - 3 = 0

∆ ’ =  3 2  -4.1.(-3 )=9 +12=21 > 0

∆ ' = 21

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Với m = -4 ta có:  x 2  +3x -1 = -4 ⇔  x 2  +3x +3 = 0

∆  =  3 2  -4.1.3=9 -12 = -3 < 0

Phương trình vô nghiệm

Vậy phương trình đã cho có 2 nghiệm :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 4 2017 lúc 14:18

Bình luận (0)
XL
Xem chi tiết
NL
23 tháng 4 2021 lúc 23:54

\(\Leftrightarrow x^2+1-\left(x+3\right)\sqrt{x^2+1}+3x=0\)

Đặt \(\sqrt{x^2+1}=t>0\)

\(\Rightarrow t^2-\left(x+3\right)t+3x=0\)

\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3+x-3}{2}=x\\t=\dfrac{x+3-x+3}{2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x\left(x\ge0\right)\\\sqrt{x^2+1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2\left(vô-nghiệm\right)\\x=\pm2\sqrt{2}\end{matrix}\right.\)

Bình luận (1)
H24
23 tháng 4 2021 lúc 23:59

ĐK: Với mọi x thuộc R.

Ta có: \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+3x+1\right)^2=\left[\left(x+3\right)\sqrt{x^2+1}\right]^2\)

\(\Leftrightarrow x^4+6x^3+11x^2+6x+1=\left(x+3\right)^2\left(x^2+1\right)\)

\(\Leftrightarrow x^4+6x^3+11x^2+6x+1=x^4+6x^3+10x^2+6x+9\)

\(\Leftrightarrow x^2-8=0\)

\(\Leftrightarrow x^2=8\)

\(\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\)

Vậy....

Bình luận (2)
MT
Xem chi tiết
NL
17 tháng 7 2021 lúc 20:06

\(\Leftrightarrow\left(x^2+2\right)\sqrt{x^2+x+1}-2\left(x^2+2\right)+x^3-x^2-5x+6=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(\sqrt{x^2+x+1}-2\right)+\left(x-2\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\dfrac{\left(x^2+2\right)\left(x^2+x-3\right)}{\sqrt{x^2+x+1}+2}+\left(x-2\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x^2+x-3\right)\left(\dfrac{x^2+2}{\sqrt{x^2+x+1}+2}+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-3=0\Rightarrow x=...\\x^2+2=\left(2-x\right)\left(\sqrt{x^2+x+1}+2\right)\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2+2x-2=\left(2-x\right)\sqrt{x^2+x+1}\)

Đặt \(\sqrt{x^2+x+1}=t>0\Rightarrow x^2=t^2-x-1\)

\(\Rightarrow t^2+x-3=\left(2-x\right)t\)

\(\Leftrightarrow t^2+\left(x-2\right)t+x-3=0\)

\(\Leftrightarrow t^2-1+\left(x-2\right)\left(t+1\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t+x-3\right)=0\)

\(\Leftrightarrow t=3-x\)

\(\Leftrightarrow\sqrt{x^2+x+1}=3-x\) (\(x\le3\))

\(\Leftrightarrow x^2+x+1=x^2-6x+9\)

\(\Leftrightarrow x=\dfrac{8}{7}\)

Bình luận (0)
MA
Xem chi tiết
NN
Xem chi tiết
AT
29 tháng 5 2021 lúc 9:02

1.\(A=\left(\sqrt{3}+1\right)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\dfrac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{\dfrac{44\left(2-\sqrt{3}\right)}{22}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

Bình luận (0)
AT
29 tháng 5 2021 lúc 9:11

2.1.a) \(x^2=\left(x-1\right)\left(3x-2\right)\Leftrightarrow x^2=3x^2-5x+2\Leftrightarrow2x^2-5x+2=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

b) \(9x^4+5x^2-4=0\Leftrightarrow9x^4+9x^2-4x^2-4=0\)

\(\Leftrightarrow9x^2\left(x^2+1\right)-4\left(x^2+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(9x^2-4\right)=0\)

mà \(x^2+1>0\Rightarrow9x^2=4\Rightarrow x^2=\dfrac{4}{9}\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

2) Gọi số xe lúc đầu của đội là a(xe) \(\left(a\in N,a>0\right)\)

Theo đề,ta có: \(\left(a-2\right)\left(\dfrac{120}{a}+3\right)=120\Leftrightarrow120+3a-\dfrac{240}{a}-6=120\)

\(\Leftrightarrow\dfrac{3a^2-6a-240}{a}=0\Rightarrow3a^2-6a-240=0\Rightarrow a^2-2a-80=0\)

\(\Leftrightarrow\left(a+8\right)\left(a-10\right)=0\) mà \(a>0\Rightarrow a=10\)

 

Bình luận (0)
VX
29 tháng 5 2021 lúc 9:29

Bài 1undefinedBài 2

2.1

undefinedBài 4undefinedundefinedBạn tham khảo nha. Chúc bạn học tốt

Bình luận (0)