Những câu hỏi liên quan
BT
Xem chi tiết
VP
9 tháng 1 2016 lúc 9:20

câu a

đường thẳng (d') là đường thẳng cần tìm 

d' // d nên d' có dạng x-y +c = 0 với c khác 0 

lấy điểm bất kì thuộc (d) là O(0,0) lấy đối xứng O qua M ta được O' ( 4, 2) vậy O' thuộc (d')

42+c=0c=2(d):xy2=0


Câu b 

Viết pt đường thẳng (a) qua M và vuông góc với (d) 

(a) cắt (d) tại đâu ta được hình chiếu H của Mok

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 8 2018 lúc 4:38

Đáp án A

Bình luận (0)
BT
Xem chi tiết
H24
Xem chi tiết
BT
Xem chi tiết
GC
10 tháng 1 2016 lúc 7:17

hinh dau

Bình luận (0)
VD
10 tháng 1 2016 lúc 8:08

x - y = 0

x = y

Bình luận (0)
BT
Xem chi tiết
NB
12 tháng 1 2016 lúc 8:44

(d) có vector chỉ phương là (1, -1) và vector pháp tuyến là (-1,1).

Đường thẳng đi qua M(2,1) và vuông góc với (d) có dạng:

\(\frac{x-2}{-1}=\frac{y-1}{1}\), hay là: x + y = 3

Hình chiếu của M trên (d) chính là giao điểm của 2 đường thẳng:

x + y = 3

x - y = 0

Giải hệ ra ta có x = y = 3/2

Vậy Hình chiếu là (3/2 ; 3/2)

 

Bình luận (0)
LP
11 tháng 1 2016 lúc 21:44

Viết pt đường thẳng (a) qua M và vuông góc với (d) 

(a) cắt (d) tại đâu ta được hình chiếu H của M

 

Bình luận (0)
BT
Xem chi tiết
LH
Xem chi tiết
AH
4 tháng 2 2023 lúc 13:52

Lời giải:
Vì $A\in (d_1)$ nên gọi tọa độ của $A$ là $(a, 2a-2)$

Vì $B\in (d_2)$ nên gọi tọa độ của $B$ là $(b, -b-3)$

$M$ là trung điểm của $AB$ nên:

\(3=x_M=\frac{x_A+x_B}{2}=\frac{a+b}{2}\Rightarrow a+b=6(1)\)

\(0=y_M=\frac{y_A+y_B}{2}=\frac{2a-2-b-3}{2}\Rightarrow 2a-b=5(2)\)

Từ $(1); (2)\Rightarrow a=\frac{11}{3}; b=\frac{7}{3}$

Khi đó: $A=(\frac{11}{3}, \frac{16}{3})$

Vì $A, M\in (d)$ nên VTCP của (d) là $\overrightarrow{MA}=(\frac{2}{3}, \frac{16}{3})$

$\Rightarrow \overrightarrow{n_d}=(\frac{-16}{3}, \frac{2}{3})$
PTĐT $(d)$ là:

$\frac{-16}{3}(x-3)+\frac{2}{3}(y-0)=0$
$\Leftrightarrow -8x+y+24=0$

Bình luận (1)
LV
Xem chi tiết
NL
14 tháng 7 2021 lúc 22:19

Gọi B là điểm đối xứng A qua d, C là giao điểm của OB và d

\(\Rightarrow AM=BM\)

\(OA+OM+AM=OA+OM+BM\ge OA+OB\)

Dấu "=" xảy ra khi và chỉ khi O, M, B thẳng hàng hay M trùng C

Phương trình đường thẳng d' qua A và vuông góc d có dạng:

\(1\left(x-2\right)+1\left(y-0\right)=0\Leftrightarrow x+y-2=0\)

Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x-y+2=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow D\left(0;2\right)\)

D là trung điểm AB \(\Rightarrow B\left(-2;4\right)\)

Phương trình OB: \(2x+y=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x+y=0\\x-y+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)

Bình luận (0)