Những câu hỏi liên quan
NU
Xem chi tiết
DQ
23 tháng 4 2016 lúc 11:11

Hàm số có cực địa và cực tiểu <=> phương trình y'(x) = 0 có hai nghiệm phân biệt :

\(\Leftrightarrow3\left(m+2\right)x^2+6x+m=0\) có 2 nghiệm phân biệt

\(\Leftrightarrow\begin{cases}m+2\ne0\\\Delta'=-3m^2-6m+9>0\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-2\\m^2+2m-3< 0\end{cases}\) \(\Leftrightarrow-3< m\ne-2< 1\)

Bình luận (0)
DK
Xem chi tiết
AN
Xem chi tiết
NL
7 tháng 7 2021 lúc 15:12

\(y'=x^2+x+m\)

Để hàm có cực đại cực tiểu có hoành độ lớn hơn m thì:

\(\left\{{}\begin{matrix}\Delta=1-4m>0\\m< x_1< x_2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{1}{4}\\\left(x_1-m\right)\left(x_2-m\right)>0\\\dfrac{x_1+x_2}{2}>m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{1}{4}\\x_1x_2-\left(x_1+x_2\right)m+m^2>0\\-\dfrac{1}{2}>m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -\dfrac{1}{2}\\2m+m^2>0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}m< -\dfrac{1}{2}\\\left[{}\begin{matrix}m>0\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -2\)

Bình luận (0)
AN
Xem chi tiết
NL
30 tháng 6 2021 lúc 18:16

Đề đúng là \(y=mx^2+2\left(m^2-5\right)x^4+4\) chứ bạn (nghĩa là ko bị nhầm lẫn vị trí \(x^2\) và \(x^4\))

Hàm có đúng 2 điểm cực đại và 1 điểm cực tiểu khi:

\(\left\{{}\begin{matrix}2\left(m^2-5\right)< 0\\2\left(m^2-5\right).m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \sqrt{5}\)

\(\Rightarrow\) có 2 giá trị nguyên của m thỏa mãn

Bình luận (0)
NV
Xem chi tiết
NL
18 tháng 7 2021 lúc 22:21

1.

Đồ thị hàm bậc 3 có 2 điểm cực trị nằm về 2 phía trục hoành khi và chỉ khi \(f\left(x\right)=0\) có 3 nghiệm phân biệt

\(\Leftrightarrow x^3+3x^2+mx+m-2=0\) có 3 nghiệm pb

\(\Leftrightarrow x^3+3x^2-2+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-2\right)+m\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+m-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+m-2=0\left(1\right)\end{matrix}\right.\)

Bài toán thỏa mãn khi (1) có 2 nghiệm pb khác -1

\(\Leftrightarrow\left\{{}\begin{matrix}1-2+m-2\ne0\\\Delta'=1-\left(m-2\right)>0\end{matrix}\right.\) 

\(\Leftrightarrow m< 3\)

Bình luận (0)
NL
18 tháng 7 2021 lúc 22:29

2.

Pt hoành độ giao điểm:

\(\dfrac{2x-2}{x+1}=2x+m\)

\(\Rightarrow2x-2=\left(2x+m\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+mx+m+2=0\) (1)

d cắt (C) tại 2 điểm pb \(\Rightarrow\) (1) có 2 nghiệm pb

\(\Rightarrow\Delta=m^2-8\left(m+2\right)>0\Rightarrow\left[{}\begin{matrix}m>4+4\sqrt{2}\\m< 4-4\sqrt{2}\end{matrix}\right.\)

Khi đó, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-\dfrac{m}{2}\\x_Ax_B=\dfrac{m+2}{2}\end{matrix}\right.\)

\(y_A=2x_A+m\) ; \(y_B=2x_B+m\)

\(\Rightarrow AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(2x_A-2x_B\right)^2=5\)

\(\Leftrightarrow\left(x_A-x_B\right)^2=1\)

\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=1\)

\(\Leftrightarrow\left(-\dfrac{m}{2}\right)^2-4\left(\dfrac{m+2}{2}\right)=1\)

\(\Leftrightarrow m^2-8m-20=0\Rightarrow\left[{}\begin{matrix}m=10\\m=-2\end{matrix}\right.\)

Bình luận (0)
NL
18 tháng 7 2021 lúc 22:31

3.

\(y'=x^2-2mx+2\left(m-1\right)\)

Hàm có 2 điểm cực trị nằm về cùng phía đối với trục tung khi và chỉ khi \(y'=0\) có 2 nghiệm pb cùng dấu

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-2\left(m-1\right)>0\\ac=1.2\left(m-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+2>0\left(\text{luôn đúng}\right)\\m>1\end{matrix}\right.\) 

\(\Leftrightarrow m>1\)

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 11 2019 lúc 14:57

Bình luận (0)
NN
Xem chi tiết
NL
27 tháng 7 2021 lúc 19:39

\(y'=3\left(m-1\right)x^2-6x-\left(m+1\right)\)

Hàm có cực đại và cực tiểu khi và chỉ khi \(y'=0\) có 2 nghiệm pb

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(m-1\right)\ne0\\\Delta'=9+3\left(m-1\right)\left(m+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m^2>-2\left(\text{luôn đúng}\right)\end{matrix}\right.\) 

Vậy \(m\ne1\)

Bình luận (0)
HM
Xem chi tiết
NT
Xem chi tiết
NN
23 tháng 4 2016 lúc 10:23

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

Bình luận (0)