Những câu hỏi liên quan
HT
Xem chi tiết
1N
Xem chi tiết
H9
14 tháng 9 2023 lúc 12:05

Bài 3:

Ta có:

\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)

\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)  

Mà: \(sinN=\dfrac{MN}{NP}\)

\(\Rightarrow sin37^o=\dfrac{MN}{25}\)

\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)

Áp dung định lý Py-ta-go ta có:

\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)

Bình luận (0)
NT
14 tháng 9 2023 lúc 12:26

3:

a: Xét ΔABC có AC^2=BA^2+BC^2

nên ΔBAC vuông tại B

b: Xét ΔBAC vuông tại B có

sin A=BC/AC=42/58=21/29

cos A=AB/AC=40/58=20/29

tan A=BC/BA=21/20

cot A=BA/BC=20/21

c: Xét ΔABC vuông tại B có BH là đường cao

nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA

=>BH*58=40*42=1680

=>BH=840/29(cm)

BA^2=AH*AC

=>AH=BA^2/AC=40^2/58=800/29cm

CB^2=CH*CA

=>CH=CB^2/CA=42^2/58=882/29(cm)

ΔBHA vuông tại H có HE là đường cao

nênBE*BA=BH^2

=>BE*40=(840/29)^2

=>BE=17640/841(cm)

ΔBHC vuông tại H có HF là đường cao

nênBF*BC=BH^2

=>BF*42=(840/29)^2

=>BF=16800/841(cm)

Xét tứ giác BEHF có

góc BEH=góc BFH=góc EBF=90 độ

=>BEHF là hình chữ nhật

=>góc BFE=góc BHE(=1/2*sđ cung BE)

=>góc BFE=góc BAC

Xét ΔBFE và ΔBAC có

góc BFE=góc BAC

góc FBE chung

Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2

=>S AECF=S ABC*(1-(420/841)^2)

=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)

Bình luận (0)
H24
14 tháng 9 2023 lúc 14:49

Đã đăng lên cộng đồng thì phải nhờ đến tất cả chứ bạn, nếu nhờ riêng ai đó thì mời ib?

Đăng như vậy có ngày không ai giúp bạn đâu.

Bình luận (1)
PN
Xem chi tiết
NT
11 tháng 1 2022 lúc 22:38

a: \(\sin B=\dfrac{AC}{BC}=\dfrac{12}{13}\)

\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{13}\)

\(\tan B=\dfrac{AC}{AB}=\dfrac{12}{5}\)

\(\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\)

Bình luận (0)
LN
Xem chi tiết
HX
Xem chi tiết
NM
2 tháng 10 2021 lúc 7:07

\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{7}{24}\Rightarrow AB=\dfrac{14\cdot24}{7}=48\left(cm\right)\)

Áp dụng pytago:

\(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)

\(\tan\widehat{C}=\dfrac{1}{\cot\widehat{C}}=\dfrac{24}{7}\\ \sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{48}{50}=\dfrac{24}{25}\\ \cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{14}{50}=\dfrac{7}{25}\)

Bình luận (2)
NP
Xem chi tiết
NL
25 tháng 8 2021 lúc 20:58

\(tanB=\sqrt{2}\Rightarrow\dfrac{AC}{AB}=\sqrt{2}\Rightarrow\dfrac{AC^2}{AB^2}=2\)

\(\Rightarrow\dfrac{AC^2}{AB^2}+1=3\Rightarrow\dfrac{AC^2+AB^2}{AB^2}=3\Rightarrow\dfrac{BC^2}{AB^2}=3\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}\)

Mà \(sinC=\dfrac{AB}{BC}\Rightarrow sinC=\dfrac{1}{\sqrt{3}}\)

\(sin^2C+cos^2C=1\Rightarrow\dfrac{1}{3}+cos^2C=1\Rightarrow cosC=\dfrac{\sqrt{6}}{3}\)

\(tanC=\dfrac{sinC}{cosC}=\dfrac{\sqrt{2}}{2}\)

b.

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{sinC}=\dfrac{2\sqrt{3}}{\dfrac{1}{\sqrt{3}}}=6\left(cm\right)\)

Trong tam giác vuông ABC:

\(tanB=\dfrac{AC}{AB}\Rightarrow AB=\dfrac{AC}{tanB}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)

Áp dụng Pitago:

\(BC=\sqrt{AB^2+AC^2}=3\sqrt{6}\left(cm\right)\)

Bình luận (0)
NL
25 tháng 8 2021 lúc 20:58

undefined

Bình luận (0)
NT
25 tháng 8 2021 lúc 21:50

a: Xét ΔABC vuông tại A có 

\(\tan\widehat{B}=\sqrt{2}\)

\(\Leftrightarrow AC=AB\cdot\sqrt{2}\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3\cdot AB^2\)

hay \(BC=AB\cdot\sqrt{3}\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{\sqrt{6}}{3}\)

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

\(\cot\widehat{C}=\sqrt{2}\)

Bình luận (0)
ML
Xem chi tiết
KA
Xem chi tiết
AH
30 tháng 9 2023 lúc 23:47

Lời giải:

a. $AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
$\cos B=\frac{AB}{BC}=\frac{3}{5}$

$\sin B = \frac{AC}{BC}=\frac{4}{5}$

$\tan B = \frac{AC}{AB}=\frac{4}{3}$

$\cot B = \frac{AB}{AC}=\frac{3}{4}$

b.

$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm) 

$\sin C = \frac{AB}{BC}=\frac{5}{13}$

$\cos C=\frac{AC}{BC}=\frac{12}{13}$

$\tan C=\frac{AB}{AC}=\frac{5}{12}$

$\cot C=\frac{AC}{AB}=\frac{12}{5}$

Bình luận (0)
NQ
Xem chi tiết
NL
9 tháng 8 2021 lúc 18:51

Áp dụng định lý Pitago:

\(AB=\sqrt{AC^2+BC^2}=1,5\left(cm\right)\)

\(sinB=\dfrac{AC}{AB}=0,6\) \(\Rightarrow cosA=sinB=0,6\)

\(cosB=\dfrac{BC}{AB}=0,8\) \(\Rightarrow sinA=cosB=0,8\)

\(tanB=\dfrac{AC}{BC}=\dfrac{3}{4}\) \(\Rightarrow cotA=tanB=\dfrac{3}{4}\)

\(cotB=\dfrac{BC}{AB}=\dfrac{4}{3}\) \(\Rightarrow tanA=cotB=\dfrac{4}{3}\)

Bình luận (0)