Những câu hỏi liên quan
TT
Xem chi tiết
NT
22 tháng 10 2021 lúc 23:14

Bài 1: 

Gọi M là trung điểm của AD

\(BM=\sqrt{AB^2+AM^2}=\sqrt{4a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{17}}{2}a\)

\(\left|\overrightarrow{AB}+\overrightarrow{DB}\right|=2\cdot BM=\sqrt{17}a\)

Bình luận (0)
KC
Xem chi tiết
NT
1 tháng 10 2021 lúc 22:09

Câu 1: \(\overrightarrow{IA}+\overrightarrow{IB}=0\)

Bởi vì khi đó, IA và IB là hai vecto đối nhau

Suy ra: IA và IB là hai vecto cùng phương

mà IA và IB có điểm chung là I

nên A,I,B thẳng hàng và IA=IB

Suy ra: I là trung điểm của AB

 

Bình luận (0)
NT
Xem chi tiết
NT
13 tháng 10 2021 lúc 21:39

a: \(\overrightarrow{AI}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\)

Bình luận (0)
H24
Xem chi tiết
NH
Xem chi tiết
H24
3 tháng 9 2021 lúc 15:39

a) ta có vector AA'+vectorBB'+vectorCC'=1/2(vectorAB+vectorAC+vectorBA+vectorBC+vectorCA+vectorCB)=vector 0

t/c trung tuyến

Bình luận (0)
VA
Xem chi tiết
TL
Xem chi tiết
HN
20 tháng 11 2023 lúc 23:47

loading...

Bình luận (0)
NN
Xem chi tiết
NN
Xem chi tiết
NT
25 tháng 11 2023 lúc 8:43

Sửa đề: Chứng minh \(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)

\(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AM}\)

\(\overrightarrow{AC}-\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AC}\)

Do đó: \(\overrightarrow{AB}-\overrightarrow{MB}=\overrightarrow{AC}-\overrightarrow{MC}\)

=>\(\overrightarrow{AB}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{MB}\)

 

Bình luận (0)