tìm gtln và gtnn
y= căn 3 cos2x+2sinxcosx-2
y=căn3 cosx-sinx
(cosx+sin2x)/(cos2x+sinx)=căn3
\(\dfrac{cosx+sin2x}{cos2x+sinx}=\sqrt{3}\)
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x-\dfrac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(2x+\dfrac{\pi}{6}\right)\)
Làm nốt nhé
a)căn 3 sin4x-cos4x-2cosx=0
b)cosx +căn 3 cos2x-căn 3 sinx-sin2x=0
c)cos 3x+sin2x=căn 3(sin3x+cos2x)
d)cosx +căn 3=3-3/cosx+căn 3 sinx+1
a/
\(\sqrt{3}sin4x-cos4x=2cosx\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin4x-\frac{1}{2}cos4x=cosx\)
\(\Leftrightarrow sin\left(4x-\frac{\pi}{6}\right)=sin\left(\frac{\pi}{2}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{6}=\frac{\pi}{2}-x+k2\pi\\4x-\frac{\pi}{6}=\frac{\pi}{2}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{15}+\frac{k2\pi}{5}\\x=\frac{2\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)
b/
\(\Leftrightarrow cosx-\sqrt{3}sinx=sin2x-\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=sin\left(2x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{3}=\frac{\pi}{6}-x+k2\pi\\2x-\frac{\pi}{3}=\frac{5\pi}{6}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow cos3x-\sqrt{3}sin3x=\sqrt{3}cos2x-sin2x\)
\(\Leftrightarrow\frac{1}{2}cos3x-\frac{\sqrt{3}}{2}sin3x=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(3x+\frac{\pi}{3}\right)=cos\left(2x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\3x+\frac{\pi}{3}=-2x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
( 1 + căn 2 ) . ( cosx + sinx ) - 2sinxcosx - 1 - căn2 = 0
giải phương trình
b)-cawn3cos4x + sin4x=2sinx
c)căn3 (sin2x+cosx) = cos2x - sinx
b.
\(\Leftrightarrow\frac{1}{2}sin4x-\frac{\sqrt{3}}{2}cos4x=sinx\)
\(\Leftrightarrow sin\left(4x-\frac{\pi}{3}\right)=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{3}=x+k2\pi\\4x-\frac{\pi}{3}=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=-\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cosx\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=sin\left(-x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=-x-\frac{\pi}{3}+k2\pi\\2x-\frac{\pi}{6}=\frac{4\pi}{3}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Tìm GTLN của:
a.y=cosx+1/cos2x, x E (-pi/2;pi/2)
b.y=(sinx)^2017 +|cosx|^2017
1+2sinxcosx=sinx+cos2x
Lời giải:
PT $\Leftrightarrow 1+2\sin x\cos x=\sin x+1-2\sin ^2x$
$\Leftrightarrow 2\sin x\cos x-\sin x+2\sin ^2x=0$
$\Leftrightarrow \sin x(2\cos x-1+2\sin x)=0$
Nếu $\sin x=0\Rightarrow x=k\pi$ với $k$ nguyên.
Nếu $2\cos x-1+2\sin x=0$
$\Leftrightarrow 2\cos x=1-2\sin x$
$\Rightarrow 4\cos ^2x=1+4\sin ^2x-4\sin x$
$\Rightarrow 4(1-\sin ^2x)=1+4\sin ^2x-4\sin x$
$\Leftrightarrow 8\sin ^2x-4\sin x-3=0$
Đến đây thì đơn giản rồi vì là pt bậc 2 1 ẩn $\sin x$
Trong các khẳng định sau, khẳng định nào là sai?
A. \(\left(sinx+cosx\right)^2=1+2sinxcosx\)
B. \(sin^4x+cos^4x=1-2sin^2xcos^2x\)
C. \(\left(sinx-cosx\right)^2=1-2sinxcosx\)
D. \(sin^6x+cos^6x=1-sin^2xcos^2x\)
giải các pt sau:
a) cosx(1-cos2x) - sin^2x = 0
b) sin3x + cos2x = 1 + 2sinxcos3x
c) ( cosx+1)(sinx - cosx + 3) = sin^2x
d) (1+sinx)(cosx-sinx) = cos^2x
a.
\(\Leftrightarrow cosx\left[1-\left(1-2sin^2x\right)\right]-sin^2x=0\)
\(\Leftrightarrow2sin^2x.cosx-sin^2x=0\)
\(\Leftrightarrow sin^2x\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
b.
Câu b chắc chắn đề đúng chứ bạn? Vế phải ấy?
c/
\(\left(1+cosx\right)\left(sinx-cosx+3\right)=1-cos^2x\)
\(\Leftrightarrow\left(1+cosx\right)\left(sinx-cosx+3\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1+cosx\right)\left(sinx+2\right)=0\)
\(\Leftrightarrow cosx=-1\)
\(\Leftrightarrow x=\pi+k2\pi\)
d.
\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)=1-sin^2x\)
\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)-\left(1+sinx\right)\left(1-sinx\right)=0\)
\(\Leftrightarrow\left(1+sinx\right)\left(cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=k2\pi\end{matrix}\right.\)
sinx + sin2x + sin3x = 1 + cosx + cos2x
cos3x + sin3x + cosx - sinx = \(\sqrt{2}\)cos2x
sinx + sin2x + sin3x = cosx + cos2x + cos3x
b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)
c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)
\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)