Giải pt \(\sqrt{x}+\sqrt{9+x}=\sqrt{x+1}+\sqrt{x+4}\)
giải pt sau
a)\(\sqrt{x^2-6x+9}=3\)
b)\(\sqrt{x+2\sqrt{x-1}}=2\)
c)\(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\)
d)\(\sqrt{x-4}+\sqrt{x+1}=5\)
Help
a:
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
=>|x-3|=3
=>x-3=3 hoặc x-3=-3
=>x=0 hoặc x=6
b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
=>\(\left|\sqrt{x-1}+1\right|=2\)
=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)
=>x-1=1
=>x=2
c:
ĐKXĐ: x>4/5
PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)
=>\(\dfrac{5x-4}{x+2}=4\)
=>5x-4=4x+8
=>x=12(nhận)
d: ĐKXĐ: x-4>=0 và x+1>=0
=>x>=4
PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)
=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)
=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)
=>\(\sqrt{x^2-3x-4}=14-x\)
=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196
=>x<=14 và -3x-4=-28x+196
=>x<=14 và 25x=200
=>x=8(nhận)
a) \(\sqrt{x^2-6x+9}=3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
\(\Leftrightarrow\left|x-3\right|=3 \)
TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)
Pt trở thành:
\(x-3=3\) (ĐK: \(x\ge3\))
\(\Leftrightarrow x=3+3\)
\(\Leftrightarrow x=6\left(tm\right)\)
TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)
Pt trở thành:
\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))
\(\Leftrightarrow x-3=-3\)
\(\Leftrightarrow x=-3+3\)
\(\Leftrightarrow x=0\left(tm\right)\)
b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))
\(\Leftrightarrow x+2\sqrt{x-1}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4-x\)
\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)
\(\Leftrightarrow4x-4=16-8x+x^2\)
\(\Leftrightarrow x^2-12x+20=0\)
\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))
\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)
\(\Leftrightarrow5x-4=4x+8\)
\(\Leftrightarrow x=12\left(tm\right)\)
giải pt \(\sqrt{x}-\sqrt{x-1}-\sqrt{x-4}+\sqrt{x-9}=0\)
ĐKXĐ: \(x\ge9\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x-9}=\sqrt{x-1}+\sqrt{x-4}\)
\(\Leftrightarrow2x-9+2\sqrt{x^2-9x}=2x-5+2\sqrt{x^2-4x+3}\)
\(\Leftrightarrow\sqrt{x^2-9x}=2+\sqrt{x^2-4x+3}\)
Do \(x\ge9>0\Rightarrow x^2-4x>x^2-9x\Rightarrow x^2-4x+3>x^2-9x\)
\(\Rightarrow\sqrt{x^2-4x+3}+2>\sqrt{x^2-9x}\)
Pt vô nghiệm
Giải pt:
\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
\(ĐK:x\in R\)
\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\) (*)
Đặt \(x^2+x+1=a;a\ge0\)
\(\rightarrow\left\{{}\begin{matrix}x^2+x+4=a+3\\2x^2+2x+9=2a+7\end{matrix}\right.\)
(*) \(\Rightarrow\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow\left(\sqrt{a+3}+\sqrt{a}\right)^2=\left(\sqrt{2a+7}\right)^2\)
\(\Leftrightarrow a+3+a+2\sqrt{a\left(a+3\right)}=2a+7\)
\(\Leftrightarrow2\sqrt{a\left(a+3\right)}=4\)
\(\Leftrightarrow\sqrt{a\left(a+3\right)}=2\)
\(\Leftrightarrow a\left(a+3\right)=4\)
\(\Leftrightarrow a^2+3a-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) \((tm)\)
Vậy \(S=\left\{0;-1\right\}\)
GIẢI CÁC PT SAU:
\(\sqrt{x-1}+\sqrt{3-x}-\sqrt{\left(x-1\right)\left(3-x\right)}=1\)
\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)
\(a,ĐK:1\le x\le3\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{3-x}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a+b-ab=1\Leftrightarrow a+b-ab-1=0\\ \Leftrightarrow\left(a-1\right)\left(1-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=1\\3-x=1\end{matrix}\right.\Leftrightarrow x=2\left(tm\right)\)
\(b,ĐK:0\le x\le9\\ PT\Leftrightarrow9+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\\ \Leftrightarrow2\sqrt{-x^2+9x}-\left(-x^2+9x\right)=0\\ \Leftrightarrow\sqrt{-x^2+9x}\left(2-\sqrt{-x^2+9x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\\x^2-9x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=9\left(n\right)\\x=\dfrac{9+\sqrt{65}}{2}\left(n\right)\\x=\dfrac{9-\sqrt{65}}{2}\left(n\right)\end{matrix}\right.\)
Giải pt: \(\sqrt{x}+\sqrt{x+9}=\sqrt{x+1}+\sqrt{x+4}\)
đk: x >=0;
bình phương 2 vế:
\(\left(\sqrt{x}+\sqrt{x+9}\right)^2=\left(\sqrt{x+1}+\sqrt{x+4}\right)^2\Leftrightarrow x+x+9+2\sqrt{x^2+9x}=x+1+x+4+2\sqrt{x^2+5x+4}\)
\(\Leftrightarrow2\left(\sqrt{x^2+9x}-\sqrt{x^2+5x+4}\right)=-4\Leftrightarrow\sqrt{x^2+9x}-\sqrt{x^2+5x+4}=-2\Leftrightarrow\sqrt{x^2+9x}=-2+\sqrt{x^2+5x+4}\)
tiếp tục bình phương 2 vế ta được:
\(x^2+9x=4+x^2+5x+4-4\sqrt{x^2+5x+4}\Leftrightarrow4\sqrt{x^2+5x+4}=4x-8\Leftrightarrow\sqrt{x^2+5x+4}=x-2\)
lại bình phương tiếp được:
\(x^2+5x+4=x^2-4x+4\Leftrightarrow9x=0\Leftrightarrow x=0\)(t/m đk)
giải pt :
a, \(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
b, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
c,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
Tính GTLN của biểu thức A.
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}\)(đk: \(x\ge0,x\ne1,x\ne4\))
B2. Giải pt
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)
Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi x=0 (tm)
Vậy \(A_{max}=\dfrac{1}{2}\)
Bài 2:
Đk: \(x\ge3;y\ge5;z\ge4\)
Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)
Áp dụng AM-GM có:
\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)
\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)
\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)
Cộng vế với vế \(\Rightarrow VT\ge20\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)
Vậy...
giải pt:
a. \(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)
b. \(\sqrt{3x-5}+\sqrt{7-3x}=5x^2-20x+22\)
c. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Giải PT sau:
\(\sqrt{x+1}+\sqrt{x+4}+\sqrt{x+9}+\sqrt{x+16}=\sqrt{x+100}\)
Điều kiện: x > -1
PT <=> \(\left(\sqrt{x+1}-1\right)+\left(\sqrt{x+4}-2\right)+\left(\sqrt{x+9}-3\right)+\left(\sqrt{x+16}-4\right)=\sqrt{x+100}-10\)
<=> \(\frac{x+1-1}{\sqrt{x+1}+1}+\frac{x+4-4}{\sqrt{x+4}+2}+\frac{x+9-9}{\sqrt{x+9}+3}+\frac{x+16-16}{\sqrt{x+16}+4}=\frac{x+100-100}{\sqrt{x+100}+10}\)
<=> \(\left(\frac{1}{\sqrt{x+1}+1}+\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{x+9}+3}+\frac{1}{\sqrt{x+16}+4}-\frac{1}{\sqrt{x+100}+10}\right).x=0\)
<=> x = 0 (thỏa mãn)
Vì \(\sqrt{x+1}+1<\sqrt{x+100}+10\Rightarrow\frac{1}{\sqrt{x+1}+1}>\frac{1}{\sqrt{x+100}+10}\)=
=> \(\frac{1}{\sqrt{x+1}+1}-\frac{1}{\sqrt{x+100}+10}>0\) nên \(\frac{1}{\sqrt{x+1}+1}+\frac{1}{\sqrt{x+4}+2}+\frac{1}{\sqrt{x+9}+3}+\frac{1}{\sqrt{x+16}+4}-\frac{1}{\sqrt{x+100}+10}>0\)
Vậy x = 0
phải gọi là quá khó che hơi j má