Cho a >c , CMR : \(\sqrt{a.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\)< \(\sqrt{a.b}\)
cho a,b,c>0. Cmr:
\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{b+\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le1\)
Áp dụng bất đẳng thức \(\sqrt{\left(x+y\right)\left(m+n\right)}\ge\sqrt{xm}+\sqrt{yn}\) , có :
\(\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\frac{a}{a+\sqrt{ac}+\sqrt{ab}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự và cộng lại ta được :
\(VT\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Vậy ta có điều phải chứng minh !
Cho a, b, c dương. CMR:
\(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le1\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{a+\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{c}+\sqrt{b}}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1=VP\)
Cho a, b, c là các số dương thỏa mãn điều kiện a+b+c+\(\sqrt{2abc}=2\)
CMR \(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-c\right)\left(2-a\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
giúp mik vs nhé cảm ơn rất nhìu
Cho a, b, c dương. CMR:
\(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le1\)
Áp dụng bđt Bu-nhi-a, ta có
\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ab}+\sqrt{ac}\)
=>\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự, rồi + vào, ta có
A\(\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (ĐPCM)
dấu =xảy ra <=>a=b=c>o
^_^
Cho a, b, c >0. CMR: \(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\le\sqrt{ab}\)
\(A=\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)
\(\Rightarrow A^2=\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\)\(=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\right)^2\)
\(\Rightarrow A^2\le\left(c+b-c\right)\left(c+ a-c\right)\left(\text{ Bunhiacopxki}\right)\)
\(\Rightarrow A^2\le ab\Leftrightarrow A\le\sqrt{ab}\left(đpcm\right)\)
\(\)
Cho a ,b ,c là các số thực dương thỏa mãn a+b+c+\(\sqrt[]{2abc}\)=2 CMR
\(\sqrt{a\left(2-b\right)\left(2-c\right)}+\sqrt{b\left(2-a\right)\left(2-c\right)}+\sqrt{c\left(2-a\right)\left(2-b\right)}=\sqrt{8}+\sqrt{abc}\)
Cho các số thực dương a+b+c=\(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\\\).CMR
\(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+b}+\dfrac{\sqrt{c}}{1+c}=\dfrac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
`sqrta+sqrtb+sqrtc=2`
`<=>(sqrta+sqrtb+sqrtc)^2=4`
`<=>a+b+c+2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4`
`<=>2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4-(a+b+c)=4-2-2`
`<=>sqrt{ab}+sqrt{bc}+sqrt{ca}=1`
`=>a+1=a+sqrt{ab}+sqrt{bc}+sqrt{ca}=sqrta(sqrta+sqrtb)+sqrtc(sqrta+sqrtb)=(sqrta+sqrtb)(sqrta+sqrtc)`
Tương tự:`b+1=(sqrtb+sqrta)(sqrtb+sqrtc)`
`c+1=(sqrtc+sqrta)(sqrtc+sqrtb)`
`=>VT=sqrta/((sqrta+sqrtb)(sqrta+sqrtc))+sqrtb/((sqrtb+sqrta)(sqrtb+sqrtc))+sqrtc/((sqrtc+sqrta)(sqrtc+sqrtb))`
`=>VT=(sqrta(sqrtb+sqrtc)+sqrtb(sqrtc+sqrta)+sqrtc(sqrta+sqrtb))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`
`=(sqrt{ab}+sqrt{ac}+sqrt{bc}+sqrt{ab}+sqrt{ac}+sqrt{bc})/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`
`=(2(sqrt{ab}+sqrt{bc}+sqrt{ca}))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`
`=2/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`
`=2/\sqrt{[(sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta)]^2}`
`=2/\sqrt{(sqrta+sqrtb)(sqrta+sqrtc)(sqrtb+sqrta)(sqrtb+sqrtc)(sqrtc+sqrta)(sqrtc+sqrtb)}`
`=2/\sqrt{(1+a)(1+b)(1+c)}=>đpcm`
cho a,b,c dương thỏa mãn \(a+b+c=5\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). CMR: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho a,b,c thực dương .CMR
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(b+c\right)^3}{bc\left(4b+4c+a\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4c+b\right)}}\ge2\sqrt{2}\)
ĐÂY MÀ LÀ toán 5 ạ??
Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)
Suy ra
\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)
Tương tự
\(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)
và \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)
Cộng ba BĐT trên ta có:
\(\frac{1}{2\sqrt{2}}A\ge B\)
Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)
\(+ca\left(4c+4a+b\right)]\)
\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)
\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)
\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)
và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)
Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)
Vậy
\(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)
toán lớp 5 phiên bản hack não
cho a,b,c >0 và a+b+c=3
cmr \(\sqrt[5]{\left(2a+b\right)\left(a+c\right)a}+\sqrt[5]{\left(2b+c\right)\left(b+a\right)b}+\sqrt[5]{\left(2c+a\right)\left(c+b\right)c}\) \(\le3\sqrt[5]{6}\)
bn gửi lên cho các bn cùng tham khảo đi! ^-^