Những câu hỏi liên quan
H24
Xem chi tiết
PN
21 tháng 5 2021 lúc 21:06

Áp dụng bất đẳng thức \(\sqrt{\left(x+y\right)\left(m+n\right)}\ge\sqrt{xm}+\sqrt{yn}\) , có :

\(\frac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\frac{a}{a+\sqrt{ac}+\sqrt{ab}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự và cộng lại ta được :

\(VT\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Vậy ta có điều phải chứng minh !

Bình luận (0)
 Khách vãng lai đã xóa
AP
Xem chi tiết
LF
5 tháng 1 2018 lúc 20:35

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{a+\sqrt{\left(\sqrt{ac}+\sqrt{ab}\right)^2}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{c}+\sqrt{b}}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1=VP\)

Bình luận (0)
NG
Xem chi tiết
KA
Xem chi tiết
VC
5 tháng 1 2018 lúc 20:01

Áp dụng bđt Bu-nhi-a, ta có 

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ab}+\sqrt{ac}\)

=>\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Tương tự, rồi + vào, ta có 

A\(\le\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (ĐPCM)

dấu =xảy ra <=>a=b=c>o

^_^

Bình luận (0)
BB
Xem chi tiết
MY
14 tháng 10 2021 lúc 19:20

\(A=\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\)

\(\Rightarrow A^2=\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\)\(=\left(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\right)^2\)

\(\Rightarrow A^2\le\left(c+b-c\right)\left(c+ a-c\right)\left(\text{ Bunhiacopxki}\right)\)

\(\Rightarrow A^2\le ab\Leftrightarrow A\le\sqrt{ab}\left(đpcm\right)\)

 

\(\)

 

Bình luận (0)
HF
Xem chi tiết
DH
Xem chi tiết
H24
26 tháng 8 2021 lúc 20:05

`sqrta+sqrtb+sqrtc=2`

`<=>(sqrta+sqrtb+sqrtc)^2=4`

`<=>a+b+c+2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4`

`<=>2sqrt{ab}+2sqrt{bc}+2sqrt{ca}=4-(a+b+c)=4-2-2`

`<=>sqrt{ab}+sqrt{bc}+sqrt{ca}=1`

`=>a+1=a+sqrt{ab}+sqrt{bc}+sqrt{ca}=sqrta(sqrta+sqrtb)+sqrtc(sqrta+sqrtb)=(sqrta+sqrtb)(sqrta+sqrtc)`

Tương tự:`b+1=(sqrtb+sqrta)(sqrtb+sqrtc)`

`c+1=(sqrtc+sqrta)(sqrtc+sqrtb)`

`=>VT=sqrta/((sqrta+sqrtb)(sqrta+sqrtc))+sqrtb/((sqrtb+sqrta)(sqrtb+sqrtc))+sqrtc/((sqrtc+sqrta)(sqrtc+sqrtb))`

`=>VT=(sqrta(sqrtb+sqrtc)+sqrtb(sqrtc+sqrta)+sqrtc(sqrta+sqrtb))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=(sqrt{ab}+sqrt{ac}+sqrt{bc}+sqrt{ab}+sqrt{ac}+sqrt{bc})/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=(2(sqrt{ab}+sqrt{bc}+sqrt{ca}))/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=2/((sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta))`

`=2/\sqrt{[(sqrta+sqrtb)(sqrtb+sqrtc)(sqrtc+sqrta)]^2}`

`=2/\sqrt{(sqrta+sqrtb)(sqrta+sqrtc)(sqrtb+sqrta)(sqrtb+sqrtc)(sqrtc+sqrta)(sqrtc+sqrtb)}`

`=2/\sqrt{(1+a)(1+b)(1+c)}=>đpcm`

Bình luận (2)
DF
Xem chi tiết
LB
Xem chi tiết
AL
1 tháng 12 2019 lúc 16:15

ĐÂY MÀ LÀ toán 5 ạ??

Bình luận (0)
 Khách vãng lai đã xóa
KN
1 tháng 12 2019 lúc 16:19

Gọi A là vế trái của BĐT cần chứng minh. Không mất tính tổng quát, ta giả sử a + b + c = 3. Áp dụng BĐT AM - GM ta có:

\(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{8bc\left(4a+4b+c\right)}}+\frac{ab\left(4a+4b+c\right)}{27}\)\(\ge\frac{1}{2}\left(a+b\right)\)

Suy ra 

             \(\sqrt{\frac{\left(a+b\right)^3}{8ab\left(4a+4b+c\right)}}\)\(+\frac{ab\left(4a+4b+c\right)}{54}\ge\frac{1}{4}\left(a+b\right)\)

Tương tự

            \(\sqrt{\frac{\left(b+c\right)^3}{8bc\left(4b+4c+a\right)}}+\frac{bc\left(4b+4c+a\right)}{54}\ge\frac{1}{4}\left(b+c\right)\)

và       \(\sqrt{\frac{\left(c+a\right)^3}{8ca\left(4c+4a+b\right)}}+\frac{ca\left(4c+4a+b\right)}{54}\ge\frac{1}{4}\left(c+a\right)\)

Cộng ba BĐT trên ta có: 

           \(\frac{1}{2\sqrt{2}}A\ge B\)

Với \(A=\frac{1}{54}[ab\left(4a+4b+c\right)+bc\left(4b+4c+a\right)\)

\(+ca\left(4c+4a+b\right)]\)

\(=\frac{1}{54}\left[4ab\left(a+b\right)+4bc\left(b+c\right)+4ca\left(c+a\right)+3abc\right]\)

\(=\frac{1}{54}\left[4\left(a+b+c\right)\left(ab+bc+ca\right)-9abc\right]\)

\(\le\frac{1}{54}\left(a+b+c\right)^3=\frac{1}{2}\)

và \(B=\frac{1}{4}.2\left(a+b+c\right)=\frac{3}{2}\)

Suy ra \(\frac{1}{2\sqrt{2}}A\ge\frac{3}{2}-\frac{1}{2}=1\Rightarrow A\ge2\sqrt{2}\)

Vậy 

              \(\sqrt{\frac{\left(a+b\right)^3}{ab\left(4a+4b+c\right)}}+\sqrt{\frac{\left(a+b\right)^3}{bc\left(4a+4b+c\right)}}+\sqrt{\frac{\left(c+a\right)^3}{ca\left(4c+4a+b\right)}}\ge2\sqrt{2}\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 12 2019 lúc 21:09

toán lớp 5 phiên bản hack não

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
TT
6 tháng 11 2017 lúc 19:49

cảm ơn mọi người nhé mk ra rồi

Bình luận (0)
VG
6 tháng 11 2017 lúc 20:22

bn gửi lên cho các bn cùng tham khảo đi! ^-^

Bình luận (0)
TT
7 tháng 11 2017 lúc 6:37

vào câu hỏi ttự cũng có đấy =.=

Bình luận (0)