Cho tam giác ABC. CMR: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC. CMR: \(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180o
Dễ thôi, kẻ tam giác ABC
Vẽ đường thẳng xy qua A song song với BC
CM 2 góc B,C so le trong với 2 góc BAx và CAy và 2 góc vừa rồi với BAC có tổng là 180 độ
=> đpcm
Bài 3. Cho tam giác ABC có \(\widehat{BAC}=a\left(0^o< a< 180^o\right)\) , hai đường phân giác của góc B, C cắt nhau tại T. Tính theo \(\widehat{BTC}\) theo a. Tìm a biết \(\widehat{BTC}=2\times\widehat{BAC}\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)
Xét ΔIBC có
\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)
a, Cho tam giác ABC biết \(\widehat{A}=100^o,\widehat{B}-\widehat{C}=50^o.Tính\widehat{B},\widehat{C}\)
b, Tam giác ABC có\(\widehat{B}=80^o,3\widehat{A}=2\widehat{C}.Tính\widehat{A},\widehat{C}\)
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
Cho tam giác ABC có \(\widehat{A}=180^o-3\times\widehat{C}\); \(\widehat{B}=70^o\)
Vẽ tia phân giác \(\widehat{B}\) cắt AC tại E. Qua E kẻ đường thẳng song song BC cắt AB tại D.CMR: ED là tia phân giác của \(\widehat{AED}\)
Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)
\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)
Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)
Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)
Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)
Vậy ...
1.Cho tam giác ABC có \(\widehat{B}>90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC. CMR:
a) \(_{2\widehat{HAD}=\widehat{HAB}+\widehat{HAC}}\)
b) \(\widehat{ABC}=90^o+\widehat{HAB}\) và \(\widehat{ACB}=90^o-\widehat{HAC}\)
c)\(\widehat{DAH}=\frac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
5. Cho tam giác ABC; 2 đường phân giác AD, BE; với D ϵ BC, E ϵ AC. CMR:
a) \(\widehat{ADC}=\widehat{BEC}\) thì \(\widehat{A}=\widehat{B}\).
b) \(\widehat{ADB}=\widehat{BEC}\) thì \(\widehat{A}+\widehat{B}=120^o\).
a) Để chứng minh a) ta cần chứng minh rằng góc ADC bằng góc BEC.
Vì AD là đường phân giác của góc BAC, nên ta có:
∠DAB = ∠DAC (1)
Tương tự, vì BE là đường phân giác của góc ABC, nên ta có:
∠CBA = ∠CBE (2)
Từ (1) và (2), ta có:
∠DAB + ∠CBA = ∠DAC + ∠CBE
∠DAB + ∠CBA = ∠BAC + ∠ABC
∠DAB + ∠CBA = ∠ABC + ∠BAC
Do đó, góc ADC bằng góc BEC.
Tiếp theo, để chứng minh rằng góc A bằng góc B, ta sử dụng định lý phụ của đường phân giác:
∠DAB = ∠DAC
∠EBA = ∠EBC
Vì ∠ADC = ∠BEC (đã chứng minh ở trên), nên ta có:
∠DAC + ∠ADC = ∠DAB + ∠ABC
∠DAB + ∠ABC = ∠DAC + ∠ADC
Từ đây, suy ra ∠A = ∠B.
Vậy, điều phải chứng minh a) đã được chứng minh.
b) Để chứng minh b), ta cần chứng minh rằng góc ADB bằng góc BEC.
Từ ∠ADB = ∠BEC (đã chứng minh ở a)), ta có:
∠ADB + ∠BEC = ∠BEC + ∠BEC
∠ADB + ∠BEC = 2∠BEC
∠ADB = ∠BEC
Do đó, góc ADB bằng góc BEC.
Tiếp theo, ta có:
∠A + ∠B + ∠C = 180° (định lý tổng các góc trong tam giác)
∠ADB + ∠B + ∠BEC = 180°
∠BEC + ∠B + ∠BEC = 180° (vì ∠ADB = ∠BEC)
2∠BEC + ∠B = 180°
2∠BEC = 180° - ∠B
∠BEC = (180° - ∠B) / 2
∠BEC = 90° - ∠B/2
∠BEC = 90° - ∠A/2 (vì ∠A = ∠B)
∠A/2 + ∠B/2 + ∠C = 90°
∠A/2 + ∠B/2 + ∠C = 90° - ∠A/2
∠A/2 + ∠A/2 + ∠C = 90° - ∠A/2
∠A + ∠C = 90° - ∠A/2
∠A + ∠C + ∠A/2 = 90°
2∠A + ∠C = 180°
∠A + ∠C = 180° - ∠A
∠A + ∠C = ∠B
∠A + ∠B + ∠C = 180°
∠A + ∠B + ∠C = 120° + 60°
∠A + ∠B + ∠C = 180°
Do đó, ∠A + ∠B = 120°.
Vậy, điều phải chứng minh b) đã được chứng minh.
Cho tam giác ABC có \(\widehat{B}>90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC
a. CMR: \(2\widehat{HAD}=\widehat{HAB}+\widehat{HAC}\)
b. CMR: \(\widehat{ABC}=90^o+\widehat{HAB}\) và \(\widehat{ACB}=90^o-\widehat{HAC}\)
c. CMR: \(\widehat{DAH}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
b: Vì góc ABC là góc ngoài cua ΔAHB
nên góc ABC=góc AHB+góc HAB=90 độ+góc HAB
Xét ΔHAC vuông tại H có góc HAC+góc ACB=90 độ
=>góc ACB=90 độ-góc HAC
c: 1/2(góc ABC-góc ACB)
=1/2(180 độ-góc ABH-90 độ+góc HAC)
=1/2(90 độ-góc ABH+góc HAC)
=góc DAH
Cho tam giác ABC có \(\widehat{C}=2\widehat{B}=4\widehat{A}\). CMR: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{BC}\)
1. Cho tam giác ABC và một điểm O nằm trong tam giác
a) CMR: \(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b)Biết \(\widehat{ABO}+\widehat{ACO}=90^o-\frac{1}{2}\widehat{A}\) và BO là tia phân giác của góc ABC. CMR: OC là tia phân giác của góc ACB