ND

Cho tam giác ABC có \(\widehat{A}=180^o-3\times\widehat{C}\)\(\widehat{B}=70^o\)

Vẽ tia phân giác \(\widehat{B}\)  cắt AC tại E. Qua E kẻ đường thẳng song song BC cắt AB tại D.CMR: ED là tia phân giác của \(\widehat{AED}\)

NM
27 tháng 9 2021 lúc 9:36

Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)

\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)

Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)

Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)

Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)

Vậy ...

 

Bình luận (0)