Bài 1: Tổng ba góc của một tam giác

NT

Cho tam giác ABC có \(\widehat{B}>90^o\). Vẽ đường phân giác AD và đường cao AH của tam giác ABC

a. CMR: \(2\widehat{HAD}=\widehat{HAB}+\widehat{HAC}\)

b. CMR: \(\widehat{ABC}=90^o+\widehat{HAB}\)\(\widehat{ACB}=90^o-\widehat{HAC}\)

c. CMR: \(\widehat{DAH}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)

NT
16 tháng 11 2022 lúc 22:25

b: Vì góc ABC là góc ngoài cua ΔAHB

nên góc ABC=góc AHB+góc HAB=90 độ+góc HAB

Xét ΔHAC vuông tại H có góc HAC+góc ACB=90 độ

=>góc ACB=90 độ-góc HAC

c: 1/2(góc ABC-góc ACB)

=1/2(180 độ-góc ABH-90 độ+góc HAC)

=1/2(90 độ-góc ABH+góc HAC)

=góc DAH

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
DA
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết