Những câu hỏi liên quan
H24
Xem chi tiết
TH
29 tháng 12 2020 lúc 22:26

Câu 1:

Phần a đề sai nên mk sửa lại:

a, x2 + 5x - 14 = x2 - 2x + 7x - 14 = x(x - 2) + 7(x - 2) = (x - 2)(x + 7)

b, xz + yz - 5(x + y) = z(x + y) - 5(x + y) = (x + y)(z - 5)

Câu 2:

x2 - 4x = -4

\(\Leftrightarrow\) x2 - 4x + 4 = 0

\(\Leftrightarrow\) (x - 2)2 = 0

\(\Leftrightarrow\) x - 2 = 0

\(\Leftrightarrow\) x = 2

Vậy x = 2

Chúc bn học tốt!

Bình luận (0)
VN
Xem chi tiết
H24
28 tháng 7 2021 lúc 8:22

a) (x3-x2)+(8x-8)=x(x-1)+8(x-1)=(x2+8)(x-1)

b) 8x3-8x2y+2xy2=2x(4x2-4xy+y2)

c) (x2+y2-z2)2 - 4x2y2=(x2+y2-z2)2 - (2xy)2=(x2+y2-z2-2xy)(x2+y2-z2+2xy)

Bình luận (0)
PN
Xem chi tiết
NM
22 tháng 10 2021 lúc 20:08

\(a,=x\left(x^2-4x+4-z^2\right)=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-z-2\right)\left(x+z-2\right)\\ b,=\left(x-y\right)^2-\left(z-5\right)^2=\left(x-y-z+5\right)\left(x-y+z-5\right)\)

Bình luận (0)
NL
22 tháng 10 2021 lúc 20:08

\(x^3-4x^2+4x-xz^2=x\left(x^2-4x+4-z^2\right)\)

\(=x\left[\left(x-2\right)^2-z^2\right]=x\left(x-2-z\right)\left(x-2+z\right)\)

\(x^2-2xy+y^2-z^2+10z-25\)

\(=\left(x-y\right)^2-\left(z-5\right)^2\)

\(=\left(x-y+z-5\right)\left(x-y-z+5\right)\)

Bình luận (0)
CB
22 tháng 10 2021 lúc 20:14

a. x- 4x2 + 4x - xz2

= x(x2 - 4x + 4 ) - z2

= x(x - 4)2 - z2

=x( x - 4 - z ) ( x - 4 + z )

b. x- 2xy +y2 - z+ 10z - 25

= ( x - y )2 -  ( z - 5 )2

= ( x - y - z + 5 )(x - y + z - 5 )

Bình luận (0)
VD
Xem chi tiết
NM
10 tháng 12 2021 lúc 14:54

\(a,=xy\left(x+2y+1\right)\\ b,=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ c,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ d,=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\\ e,=\left(x+1\right)^2-y^2=\left(x+y+1\right)\left(x-y+1\right)\\ g,=\left(x+9-6x\right)\left(x+9+6x\right)=\left(9-5x\right)\left(7x+9\right)\\ h,=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\\ i,=\left(x-1\right)^3-y^3=\left(x-y-1\right)\left(x^2-2x+1+xy+y+y^2\right)\)

Bình luận (0)
NT
10 tháng 12 2021 lúc 14:54

c: =(x-5)(x+3)

e: =(x+1-y)(x+1+y)

Bình luận (0)
PH
Xem chi tiết
H24
Xem chi tiết
NM
15 tháng 12 2021 lúc 16:25

\(a,=x\left(x-2\right)^2\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\\ c,=x^2\left(2x-1\right)-4\left(2x-1\right)=\left(x-2\right)\left(x+2\right)\left(2x-1\right)\\ d,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ e,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x\left[\left(x-2\right)^2-y^2\right]=x\left(x-y-2\right)\left(x+y-2\right)\\ g,=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\\ h,=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)^2\left(x+2\right)\\ i,=3x^2+3x-10x-10=\left(x+1\right)\left(3x-10\right)\)

Bình luận (0)
NN
Xem chi tiết
TC
29 tháng 7 2021 lúc 10:13

undefined

Bình luận (1)
NT
29 tháng 7 2021 lúc 13:43

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(x+2y+1\right)\)

b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)

c) Ta có: \(x^6-x^4+2x^3+2x^2\)

\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)

\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)

\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)

d) Ta có: \(x^3+3x^2+3x+1-8y^3\)

\(=\left(x+1\right)^3-\left(2y\right)^3\)

\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)

\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)

Bình luận (0)
NN
Xem chi tiết
NT
6 tháng 8 2021 lúc 10:25

a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)

b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)

Bình luận (0)
NT
6 tháng 8 2021 lúc 11:20

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(1+x+2y\right)\)

b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

Bình luận (0)
DK
Xem chi tiết
NT
24 tháng 7 2023 lúc 20:58

a: 3x^2-12y^2

=3(x^2-4y^2)

=3(x-2y)(x+2y)

b: 5xy^2-10xyz+5xz^2

=5x(y^2-2yz+z^2)

=5x(y-z)^2

g: (a+b+c)^3-a^3-b^3-c^3

=(a+b+c-a)[(a+b+c)^2+a(a+b+c)+a^2]-(b+c)(b^2-bc+c^2)

=(b+c)[a^2+b^2+c^2+2ab+2ac+2bc+a^2+ab+ac+a^2-b^2+bc-c^2]

=(b+c)[3a^2+3ab+3bc+3ac]

=3(a+b)(b+c)(a+c)

Bình luận (0)