Cho tam Giác ABC vuông tại a , kẻ đg cao ah . biết ab =6cm, bh=, 3cm . tính ah , ac , ch
Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH=4,5cm. Tính AB,AC,BC,HC. b) Biết AB = 6cm, BH=3cm. Tính AH,AC,CH
cho tam giác ABC vuông tại A, đường cao AH
a, biết AH = 6cm, BH = 4,5cm. Tính AB, AC, BC, HC
b, biết AB = 6cm, BH = 3cm. Tính AH, AC, CH
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)
và \(BC=12,5\left(cm\right)\)
\(b,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)
Cho Tam Giác ABC Vuông tại A;Đ / cao AH ; A, Biết AH=6cm , BH=4.5cm . tính AB,AC,BC,HC ; b, Biết AB=6cm , BH=3cm Tính AH,AC,CH
a) ÁP dụng Pytago ta có: AH2 + HB2 = AB2
=> AB2 = 62 + 4,52 =56,25
=> AB = 7,5
Áp dụng hệ thức lượng ta có: AB2 = BH.BC
=> \(BC=\frac{AB^2}{BH}=12,5\)
=> \(HC=BC-BH=12,5-4,5=8\)
Áp dụng hệ thức lượng ta có:
\(AC^2=HC.BC\)
=> \(AC=\sqrt{HC.BC}=10\)
b) Áp dụng Pytago ta có: AB2 = BH2 + AH2
=> AH2 = AB2 - BH2 = 27
=> \(AH=3\sqrt{3}\)
Áp dụng hệ thức lượng ta có:
\(AH^2=BH.HC\)
=> \(HC=\frac{AB^2}{BH}=12\)
=> BC = HC + BH = 15
Áp dụng hệ thức lượng ta có:
AC2 = HC.BC
=> \(AC=\sqrt{HC.BC}=6\sqrt{5}\)
a) Tam giác ABH vuông tại H, áp dụng định lý PyTago
Ta có: \(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5\) (Cm)
Tam giác ABC vuông tại A, áp dụng hệ thức: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{6^2}-\frac{1}{7,5^2}=\frac{1}{100}\)
\(\Rightarrow AC^2=100\Rightarrow AC=10\) (Cm)
Tam giác ABC vuông tại A, áp dụng định lý Pytago, ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{7,5^2+10^2}=12,5\) (Cm)
\(HC=BC-BH=12,5-4,5=8\) (Cm)
b) Tam giác ABH vuông tại H, áp dụng định lý Pytago, ta có:
\(AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3^2}=3\sqrt{3}\) (Cm)
Tam giác ABC vuông tại A, áp dụng hệ thức ta được:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{\left(3\sqrt{3}\right)^2}-\frac{1}{6^2}=\frac{1}{108}\)
\(\Rightarrow AC=\sqrt{108}=6\sqrt{3}\) (Cm)
Tam giác ACH vuông tại H, áp dụng định lý Pytago ta có:
\(CH=\sqrt{AC^2-AH^2}=\sqrt{\left(6\sqrt{3}\right)^2-\left(3\sqrt{3}\right)^2}=9\) (Cm)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A, kẻ đường cao AH. Biết AH = 6cm, BH = 3cm. Tính AC?
A. 120 cm
B. 150 cm
C. 180 cm
D. 108 cm
1, Tam giác ABC vuông tại A, kẻ đường cao AH
a.Tính AB, AC,BC, HC nếu AH= 6cm, BH= 4,5cm
b.Biết AB= 6cm, HB- 3cm. Tính AH, AC,CH
5, Cho tam giác ABC vuông tại A có AB=21cm, góc C= 40 độ
a.Tính AC
b,Tính BC
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH
a, Biết AH = 6cm, BH = 4,5cm. Tính AB, AC, BC, HC
b, Biết AB = 6cm, BH = 3cm. Tính AH và tính chu vi của các tam giác vuông trong hình
a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm
b, AH = 3 3 cm; P A B C = 18 + 6 3 c m ; P A B H = 9 + 3 3 c m ; P A C H = 9 + 9 3 c m
Bài 1. Cho ∆ABC vuông tại A, kẻ đường cao AH. Biết AB = 6cm, BH = 3cm. Tính AH, AC, CH.
\(AH=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
BC=AB^2/BH=12cm
\(AC=\sqrt{12^2-6^2}=6\sqrt{3}\left(cm\right)\)
CH=BC-BH=9cm
Cho tam giác ABC vuông tại A đường cao AH.
a. Biết AB=3cm, BH=6cm. Tính AH,CH
b. Biết AB=16cm, BH=25cm. Tính AC,CH
Help me:))