Những câu hỏi liên quan
NL
Xem chi tiết
VM
10 tháng 4 2017 lúc 12:12

Bước 1: Tìm \(\Delta\)và rút gọn

Bước 2: Để pt .. <=> \(\Delta\).. 0

Bước 3: Kết luận

Chúc bạn thành công =))))))

Bình luận (0)
VM
10 tháng 4 2017 lúc 12:12

Bổ sung thêm bước 2: Là phải giải bất pt hoặc pt nhé 

Bình luận (0)
QG
Xem chi tiết
H24
6 tháng 10 2017 lúc 12:04

\(\frac{-512}{343}=\left(\frac{-8}{7}\right)^3\)

\(\Rightarrow x=3\)

Bình luận (0)
KM
6 tháng 10 2017 lúc 12:04

-512/343=(-8/7)\(^3\)

Bình luận (0)

\(-\frac{512}{343}=\left(-\frac{8}{7}\right)^x\)

Vì \(-\frac{512}{343}=\left(-\frac{8}{7}\right)^3\)

\(\Rightarrow x=3\)

Bình luận (0)
ND
Xem chi tiết
NN
Xem chi tiết
DH
24 tháng 6 2018 lúc 20:38

Với x = 0 thì \(y=\pm1\)

Xét \(x\ne0\). Từ phương trình, ta có: \(4y^2=\left(2x^2+x\right)^2+3x^2+4x+4>\left(2x^2+x\right)^2\)

Hơn nữa: \(4y^2=\left(2x^2+x+2\right)^2-5x^2< \left(2x^2+x+2\right)^2\)

Suy ra: \(\left(2x^2+x\right)^2< 4y^2< \left(2x^2+x+2\right)^2\)

Do đó, ta có: \(4y^2=\left(2x^2+x+1\right)^2\) hay \(3\left(1+x+x^2+x^3+x^4\right)=\left(2x^2+x+1\right)^2\)

giải phương trình này, ta được: x = -1 haowcj x = 3

Từ đó => Nghiệm của phương trình là: (0;1);(0;-1);(-1;1);(-1;-1);(3;11);(3;-11)

Bình luận (0)
TP
24 tháng 6 2018 lúc 20:39

đã xong , xin tích trc rồi ta làm :)

Bình luận (0)
NL
Xem chi tiết
NS
Xem chi tiết
NT
7 tháng 3 2022 lúc 16:31

\(\left\{{}\begin{matrix}5x=5m\\y=2x-m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=10-m+1=11-m\end{matrix}\right.\)

Thay vào ta đc 

\(2m^2-3\left(11-m\right)=2\Leftrightarrow2m^2-33+3m=2\Leftrightarrow2m^2+3m-35=0\Leftrightarrow m=\dfrac{7}{2};m=-5\)

Bình luận (0)
HH
Xem chi tiết
H9
25 tháng 7 2023 lúc 11:38

a) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left(2x+1\right)^2=6^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)

\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)

\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)

Bình luận (0)
VH
25 tháng 7 2023 lúc 12:02

a) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)

\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)

 

Bình luận (0)
VH
25 tháng 7 2023 lúc 12:08

c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)

\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)

d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)

 

Bình luận (0)
TL
Xem chi tiết
NA
28 tháng 2 2019 lúc 20:49

1, 

a) \(x^2-4x+m=0\)

\(\Delta=b^2-4ac=\left(-4\right)^2-4.1.m=16-4m\)

Để pt có nghiệm : \(\Delta\ge0\)

<=>\(16-4m\ge0\)

\(\Leftrightarrow16\ge4m\)

\(\Leftrightarrow m\le4\)

Bình luận (0)
LS
Xem chi tiết
KL
16 tháng 3 2023 lúc 8:41

x² - 9x + 8 = 0

Ta có:

a + b + c = 1 + (-9) + 8 = 0

Phương trình có hai nghiệm:

x₁ = 1; x₂ = 8

Vậy S = {1; 8}

Bình luận (0)
NT
16 tháng 3 2023 lúc 8:23

=>(x-1)(x-8)=0

=>x=1 hoặc x=8

Bình luận (0)