tìm x biết x³-2x+15=0
phân tích thành nhân tử
x²-x+2
9-x²-4xy-y²
10x²-20xy+10y²-40z²
Tìm x biết:
x^2 - 10x + 25 = 3( 5 -x )
Phân tích đa thức thành nhân tử:
x^2 - 6x + 5
x^2 + 2xy + y^2 - 2x - 2y + 1
Tìm giá trị nhỏ nhất của biểu thức:
P= 5x^2 + y^2 + 15 + 4xy - 14x - 6y
phân tích đa thức thành nhân tử: x^2-y^2+10x-10y
`#3107.101107`
`x^2 - y^2 + 10x - 10y`
`= (x^2 - y^2) + (10x - 10y)`
`= (x - y)(x + y) + 10(x - y)`
`= (x + y + 10)(x - y)`
_____
Sử dụng HĐT:
`A^2 - B^2 = (A - B)(A + B).`
Bài 1:phân tích đa thức thành nhân tử a) 9x²y+15xy²-3x b) 3z(z-2)+5(2-z) c) x²+4xy-42²+4y² d) x²+2x-15 Bài 2:tìm x a) x²-4x=0 b) (2x+2)-4x(x+3)=9 c) x²-12x=-36 HELP MEEEEEEE !!!
Bài 1:
\(a,=3x\left(3xy+5y-1\right)\\ b,=\left(z-2\right)\left(3z-5\right)\\ c,=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\\ d,=x^2-3x+5x-15=\left(x-3\right)\left(x+5\right)\)
Bài 2:
\(a,\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x+2-4x^2-12x=9\\ \Leftrightarrow4x^2+10x+7=0\\ \Leftrightarrow4\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow4\left(x+\dfrac{5}{6}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ c,\Leftrightarrow x^2-12x+36=0\\ \Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x=6\)
Phân tích thành nhân tử:
x2+5y2+2x-4xy-10y+18
Đa thức không phân tích được thành nhân tử bạn nhé.
Bài 1. Phân tích các đa thức sau thành nhân tử a) y - 9 - x + 6x b) 25 - 4x? - 4xy - y c) x - xz + 4y - 2yz + 4xy d) 3x + 6xy - 48z + 3y? e) x - z + 4y - 4t - 4xy + 4zt f) +2x'y+xy-16x Bài 2. Tìm x biết a) 3x(-3)-4x+12 -0 b) -5x=0 c) (a-2 -(x+2 =0 d) -9-4x+3)=0 Bài 3. Tính nhanh giá trị biểu thức a) A= x - 4z? - 2xy + y với x = -16; y = -6; z = 45 b) B = x - y + 2y-1 với x = 75; y = 26. c) C = 2x + xy - x'y - 2y với x= y =
giúp e làm vs ạ em đang cần gấp
bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được
Phân tích thành nhân tử
`x^2 -4xy+10y^2`
Đa thức này không phân tích được nha bạn
bài 2 phân tích đa thức thành nhân tử
a x2 - 2x -9y2 - 9y
b x2y -x3 -10y + 10x
c x2 ( x-2 ) + 49 ( 2-x)
sossss
b) \(x^2y-x^3-10y+10x\)
\(=x^2\left(y-x\right)-10\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-10\right)\)
c) \(x^2\left(x-2\right)+49\left(2-x\right)\)
\(=\left(x-2\right)\left(x^2-49\right)\)
\(=\left(x-2\right)\left(x-7\right)\left(x+7\right)\)
Bài 2 : Phân tích đa thức sau thành nhân tử
a) 5x^2 + 30y
b) x^3 - 2x^2 - 4xy^2 + x
Bài 3 : Tìm x , biết
a) 2x(x - 3 ) - x + 3 = 0
b) ( 3x - 1 ) ( 2x + 1 ) - (x + 1)^2 = 5x^2
Bài 3
a) 2x(x - 3) - x + 3 = 0
2x(x - 3) - (x - 3) = 0
(x - 3)(2x - 1) = 0
x - 3 = 0 hoặc 2x - 1 = 0
*) x - 3 = 0
x = 3
*) 2x - 1 = 0
2x = 1
x = 1/2
Vậy x = 1/2; x = 3
b) (3x - 1)(2x + 1) - (x + 1)² = 5x²
6x² + 3x - 2x - 1 - x² - 2x - 1 - 5x² = 0
(6x² - x² - 5x²) + (3x - 2x - 2x) = 0 + 1 + 1
-x = 2
x = -2
Bài 2
a) 5x² + 30y
= 5(x² + 6y)
b) x³ - 2x² - 4xy² + x
= x(x² - 2x - 4y² + 1)
= x[(x² - 2x + 1) - 4y²]
= x[(x - 1)² - (2y)²]
= x(x - 1 - 2y)(x - 1 + 2y)
Chiều dài của hình chữ nhật sau khi tăng thêm 5% là:
100%+5%=105% (chiều dài ban đầu)
Chiều rộng của hình chữ nhật sau khi tăng thêm 8% là:
100%+8%=108% (chiều rộng ban đầu)
Diện tích của hình chữ nhật sau khi tăng là:
105%×108%=113,4% (diện tích ban đầu)
Đáp số:113,4$
phân tích đa thức thành nhân tử
\(a)3x^3+6x^2y \)
\(b)2x^3-6x^2\)
\(c)18x^2-20xy\)
\(d)xy+y^2-x-y \)
\(e)(x^2y^2-8)^2-1\)
\(f)x^2-7x-8\)
\(g)10x^2(2x-y)+6xy(y-2x)\)
\(h)x^2-2x+1-y^2\)
\(i)2x(x+2)+x^2(-x-2)\)
\(k)-9+6x-x^2\)
\(l)8xy-2x^2-8y^2\)
\(m)3x^2+5x-3y^2-5y\)
a) 3x³ + 6x²y
= 3x².(x + 2y)
b) 2x³ - 6x²
= 2x².(x - 2)
c) 18x² - 20xy
= 2x.(9x - 10y)
d) xy + y² - x - y
= (xy + y²) - (x + y)
= y(x + y) - (x + y)
= (x + y)(y - 1)
e) (x²y² - 8)² - 1
= (x²y² - 8 - 1)(x²y² - 8 + 1)
= (x²y² - 9)(x²y² - 7)
= (xy - 3)(xy + 3)(x²y² - 7)
f) x² - 7x - 8
= x² - 8x + x - 8
= (x² - 8x) + (x - 8)
= x(x - 8) + (x - 8)
= (x - 8)(x + 1)
a: \(3x^3+6x^2y\)
\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)
b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)
c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)
d: \(xy+y^2-x-y\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
e: \(\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)
\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)
f: \(x^2-7x-8\)
\(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)
g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)
\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)
\(=2x\left(2x-y\right)\left(5x-3y\right)\)
h: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)
\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)
k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)
\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)
l: \(-2x^2+8xy-8y^2\)
\(=-2\left(x^2-4xy+4y^2\right)\)
\(=-2\left(x-2y\right)^2\)
m: \(3x^2+5x-3y^2-5y\)
\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+3y+5\right)\)
g) 10x²(2x - y) + 6xy(y - 2x)
= 10x²(2x - y) - 6xy(2x - y)
= 2x(2x - y)(5x - 3y)
h) x² - 2x + 1 - y²
= (x² - 2x + 1) - y²
= (x - 1)² - y²
= (x - y - 1)(x + y - 1)
i) 2x(x + 2) + x² (-x - 2)
= 2x(x + 2) - x²(x + 2)
= x(x + 2)(2 - x)
k) -9 + 6x - x²
= -(x² - 6x + 9)
= -(x - 3)²
l) 8xy - 2x² - 8y²
= -2(x² - 4xy + 4y²)
= -2(x - 2y)²
m) 3x² + 5x - 3y² - 5y
= (3x² - 3y²) + (5x - 5y)
= 3(x² - y²) + 5(x - y)
= 3(x - y)(x + y) + 5(x - y)
= (x - y)[3(x + y) + 5]
= (x - y)(3x + 3y + 5)