tính giá trị của p:
\(3x^5+12x^4-8x^3-23x^2-7x+1khix=-2+\sqrt{5}\)
lm nhanh giúp mk nhé!thanks
tính giá trị của đa thức sau
P=\(3x^5+12x^4-8x^3-23x^2-7x+1\) với x=\(-2+\sqrt{5}\)
Tính gt của: A=3x5+12x4-8x3-23x2-7x+1 với x=\(-2+\sqrt{5}\)
HD:CM với x=-2+căn 5 thì x2+4x-1=0.
Tìm dư trong phép chia đa thức A :(x2+4x-1)
+) Tính giá trị của x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)
=> (-2 + \(\sqrt{5}\)) 2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1 = 0
Vậy x2 + 4x - 1 = 0 tại x = -2 + \(\sqrt{5}\)
+) A = 3x3.(x2 + 4x - 1 ) - 5x3 - 23x2 - 7x + 1
= 3x3.(x2 + 4x - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1
= (3x3 - 5x).(x2 + 4x - 1 ) - 3.(x2 + 4x -1) - 2 = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2
Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2
+) A = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2 chia cho (x2 + 4x - 1 ) dư - 2
Với giá trị nào của x thì biểu thức:P=\(-x^2-8x+5\).Có giá trị lớn nhất.Tìm giá trị lớn nhất đó?
các bn giúp mk nhé!
ai lm đúng mk tick cho!^-^
(lm chi tiết)
thanks.
cho x=\(7+4\sqrt{3}\), y=\(7-4\sqrt{3}\)
tính \(x^2+y^2\), \(x^3+y^3\), \(x^7+y^7\)
lm nhanh giúp mk nhé! thanks
\(x+y=14\) ; \(xy=\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)=1\)
\(x^2+y^2=\left(x+y\right)^2-2xy=14^2-2.1=194\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=14^3-3.1.14=2702\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=194^2-2.1^2=37634\)
\(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)=2702.37634-1^3.14=...\)
Với giá trị nào của x thì biểu thức:P=\(-x^2-8x+5.\)Có giá trị lớn nhất.Tìm giá trị lớn nhất đó?
Các bn ơi giúp mk nhé!
ai lm đúng mk tick cho^_^
(lm chi tiết)
thanks!
`Cho biểu thức P=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right)\div\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn P
b)Tìm giá trị nhỏ nhất
Lm nhanh giúp mk nhé!
a) ĐK:\(x\ge0;x\ne9\)
\(P=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
b)\(P=-\dfrac{3}{\sqrt{x}+3}\)
Có \(\sqrt{x}+3\ge3;\forall x\ge0\)
\(\Leftrightarrow-\dfrac{3}{\sqrt{x}+3}\ge-\dfrac{1}{3}\)
\(P_{min}=-\dfrac{1}{3}\Leftrightarrow x=0\)
a) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
Các bạn gải chi tiết giúp mk nhé. Cảm ơn
a) Cho x=\(\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}}-38-2}\). Tính P=\(\left(x^2-x-1\right)^{2016}\)
b) Cho \(x+\sqrt{3}=2\). Tính giá trị của biểu thức; B= \(x^5-3x^4-3x^3+6x^2-20x+2021\)
b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)
\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)
\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)
Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)
Tính giá trị của đa thức
A=4x^4+7x^2y^2+3y^4+5y^2 với x^2+y^2=5
B=9x^10-12x^7+6x^4+3x+2010 tại x thỏa mãn 3x^9-4x^6+2x^3+1=6
giải giúp mình nha
Giai PT:
a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)
b,\(\sqrt{3x^2+12x+16}+\sqrt{y^2+4x^2+13}=5\)
c.\(\sqrt{x-3}+\sqrt{5-x}=x^2-8x+18\)